Lực có môđun 30N là hợp lực của hai lực nào ?
Ta có, điều kiện của hợp lực: \(\left| {{F_1} - {F_2}} \right| \le F \le {F_1} + {F_2}\)
Phương án A : \(0 \le F \le 24N\)
Phương án B: \(6N \le F \le 26N\)
Phương án C: \(30N \le F \le 62N\)
Phương án D: \(34N \le F \le 66N\)
=> Lực có môđun 30N là hợp lực của hai lực thành phần 16N và 46N có cùng phương nhưng ngược chiều
Cho hai lực đồng qui có cùng độ lớn 600N.Hỏi góc giữa 2 lực bằng bao nhiêu thì hợp lực cũng có độ lớn bằng 600N.
Vận dụng biểu thức xác định hợp lực của hai lực thành phần, ta có:
\(\begin{array}{l}F = \sqrt {{F_1}^2 + F_2^2 + 2{F_1}{F_2}{\rm{cos}}\alpha } \\ \leftrightarrow 600 = \sqrt {{{600}^2} + {{600}^2} + 2.600.600{\rm{cos}}\alpha } \\ \to c{\rm{os}}\alpha {\rm{ = - }}\frac{1}{2} \to \alpha = {120^0}\end{array}\)
Hợp lực của 4 lực đồng quy như hình vẽ là:
Biết \({F_1} = 5N,{F_2} = 3N,{F_3} = 7N,{F_4} = 1N\)
Từ hình, ta có:
+ \(\overrightarrow {{F_1}} \uparrow \downarrow {\overrightarrow F _3} \to {F_{13}} = \left| {{F_1} - {F_3}} \right| = \left| {5 - 7} \right| = 2N\)
+ \(\overrightarrow {{F_2}} \uparrow \downarrow {\overrightarrow F _4} \to {F_{24}} = \left| {{F_2} - {F_4}} \right| = \left| {3 - 1} \right| = 2N\)
+ \(\overrightarrow {{F_{13}}} \bot \overrightarrow {{F_{24}}} \to F = \sqrt {{F_{13}}^2 + {F_{24}}^2} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 N\)
Một vật có trọng lượng P đứng cân bằng nhờ 2 dây OA làm với trần một góc 600 và OB nằm ngang. Độ lớn lực căng T1 của dây OA bằng:
+ Phân tích lực \({\overrightarrow T _1}\) thành hai thành phần theo phương Ox và Oy, ta có:
Vật cân bằng => Tổng tất cả các lực tác dụng lên vật bằng 0
Từ hình ta có:
Theo phương Oy: \({T_1}\sin {60^0} = P \to {T_1} = \frac{P}{{\sin {{60}^0}}} = \frac{{2P}}{{\sqrt 3 }}\)
Một chiếc đèn được treo vào tường nhờ một dây AB. Muốn cho đèn ở xa tường, người ta dùng một thanh chống nằm ngang một đầu tì vào tường, còn đầu kia tì vào điểm B của dây như hình vẽ:
Biết đèn nặng $4kg$ và dây hợp với tường một góc $30^0$. Lực căng dây AB là bao nhiêu? Lấy $g = 10m/s^2$
+ Phân tích lực, ta được:
+ Theo điều kiện cân bằng của vật là hợp lực tác dụng lên vật bằng 0
Từ hình ta có:
\(\overrightarrow {{T_y}} \) cân bằng với trọng lực \(\overrightarrow P \)
\(\begin{array}{l} \leftrightarrow {T_y} = P \leftrightarrow Tc{\rm{os3}}{{\rm{0}}^0} = P\\ \to T = \dfrac{P}{{c{\rm{os3}}{{\rm{0}}^0}}} = \dfrac{{mg}}{{c{\rm{os3}}{{\rm{0}}^0}}} = \dfrac{{4.10}}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{80}}{{\sqrt 3 }}(N)\end{array}\)
Vật rắn nằm cân bằng như hình vẽ, góc hợp bởi lực căng của dây là ${150^0}$. Trọng lượng của vật là bao nhiêu? Biết độ lớn lực căng của hai dây là $200N$
Theo đầu bài, ta có:
\(\begin{array}{l}{T_1} = {T_2} = T = 200N\\\alpha = {150^0}\end{array}\)
Gọi hợp lực của hai lực căng dây là \(\overrightarrow {{T_{12}}} \)
Ta có, vật rắn nằm cân bằng: \( \to \overrightarrow {{T_1}} + \overrightarrow {{T_2}} + \overrightarrow P = \overrightarrow 0 \)
\( \to P = {T_{12}} = 2Tc{\rm{os}}\frac{{{{150}^0}}}{2} = 2.200.c{\rm{os7}}{{\rm{5}}^0} \approx 103,5(N)\)
Treo một vật nặng khối lượng 6kg vào điểm giữa của một sợi dây cáp căng ngang giữa hai cột thẳng đứng cách nhau 8m làm dây võng xuống 0,5m. Lấy g = 10m/s2. Lực căng của dây là:
+ Vẽ hình, phân tích lực ta được:
Theo đề bài, ta có:
\(\begin{array}{l}T = T'\\IH = 0,5m;HA = 4m\end{array}\)
+ Vật cân bằng: \( \to \overrightarrow P + \overrightarrow T + \overrightarrow {T'} = \overrightarrow 0 \)
Từ hình ta có: \(P = 2T{\rm{sin}}\alpha \)
Mặt khác, ta có: \(\tan \alpha = \dfrac{{IH}}{{HA}} = \dfrac{{0,5}}{4} = \dfrac{1}{8}\)
\(\to sin\alpha = 0,124\)
\( \to T = \dfrac{P}{{2\sin \alpha }} = \dfrac{{mg}}{{2\sin \alpha }} = \dfrac{{6.10}}{{2.0,124}} = 241,9(N)\)
Chọn đáp số đúng. Hai lực đồng quy có độ lớn là 9N và 12N. Giá trị nào có thể là độ lớn của hợp lực:
Cách giải :
Công thức xác định độ lớn của hợp lực : \(F = \sqrt {F_1^2 + F_2^2 + 2{F_1}{F_2}.\cos \alpha } {\rm{ }}\)
Ta có : \(\left| {{F_1}\; - {F_2}} \right| \le F \le {F_1}\; + {F_2} \Leftrightarrow 3 \le F \le 21\)
→ Vậy 15N là giá trị có thể là độ lớn của hợp lực
Cho ba lực đồng quy cùng nằm trong một mặt phẳng, có độ lớn bằng nhau và từng đôi một làm thành góc 1200 (hình vẽ). Tìm hợp lực của chúng.
Ta có: \(\overrightarrow {{F_{123}}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {{F_{12}}} + \overrightarrow {{F_3}} \)
Vì \(\left\{ \begin{array}{l}{F_1} = {F_2}\\\left( {\overrightarrow {{F_1}} ;\overrightarrow {{F_2}} } \right) = {120^0}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{F_{12}} = {F_1} = {F_2}\\\left( {\overrightarrow {{F_{12}}} ;\overrightarrow {{F_2}} } \right) = {60^0}\end{array} \right.\)
Do vậy \(\left\{ \begin{array}{l}\overrightarrow {{F_{12}}} \,\, \uparrow \downarrow \,\overrightarrow {{F_3}} \\{F_{12}} = {F_3}\end{array} \right. \Rightarrow \overrightarrow {{F_{123}}} = \overrightarrow {{F_{12}}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)
Phân tích lực \(\overrightarrow F \) thành lực \(\overrightarrow {{F_1}} \) và vecto lực \(\overrightarrow {{F_2}} \) theo hai phương OA và OB (hình 9 vẽ). Giá trị nào sau đây là độ lớn của hai lực thành phần?
Áp dụng quy tắc hình bình hành: Từ điểm ngọn của vecto \(\overrightarrow F \) lần lượt vẽ các đoạn thẳng song song với OA và OB ta đượcr \(\overrightarrow {{F_1}} \) trên OA và \(\overrightarrow {{F_2}} \) trên OB sao cho: \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)
Ta có hình bình hành\(O{F_1}F{F_2}\) có đường chéo OF là đường phân giác của góc O nên \(O{F_1}F{F_2}\) là hình thoi
Tam giác F1OI vuông tại I có:
\(\begin{array}{l}\cos 30 = \dfrac{{OI}}{{O{F_1}}} \Rightarrow O{F_1} = \dfrac{{OI}}{{\cos 30}} = \dfrac{{\dfrac{{OF}}{2}}}{{\cos 30}} = 0,58.OF\\ \Rightarrow {F_1} = {F_2} = 0,58F\end{array}\)
Một vật có khối lượng 1 kg được giữ yên trên một mặt phẳng nghiêng bởi một sợi dây song song với đường dốc chính. Biết α = 300. Cho g = 10 m/s2. Lực ép của vật lên mặt phẳng nghiêng là bao nhiêu?
Chất điểm chịu tác dụng của các lực:
+ Trọng lực \(\overrightarrow P \) có độ lớn P = mg = 1.10 = 10N
+ Lực căng dây \(\overrightarrow T \)
+ Phản lực \(\overrightarrow Q \)
Biểu diễn các lực tác dụng vào vật trên hình vẽ:
Phân tích \(\overrightarrow P = \overrightarrow {{P_1}} + \overrightarrow {{P_2}} \) với: \(\overrightarrow {{P_1}} \) song song với mặt phẳng nghiêng; \(\overrightarrow {{P_2}} \) vuông góc với mặt phẳng nghiêng.
Điều kiện cân bằng của chất điểm: \(\overrightarrow T + \overrightarrow Q + \overrightarrow {{P_1}} + \overrightarrow {{P_2}} = 0\)
Xét theo hai phương song song và vuông góc với mặt phẳng nghiêng: \(\left\{ \begin{array}{l}\overrightarrow T + \overrightarrow {{P_1}} = 0\\\overrightarrow Q + \overrightarrow {{P_2}} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}T = {P_1}\\Q = {P_2}\end{array} \right.\)
Từ hình vẽ ta có: \(\left\{ \begin{array}{l}{P_1} = P.\sin \alpha \\{P_2} = P.\cos \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}T = {P_1} = P.\sin \alpha = 10.\sin 30 = 5N\\Q = {P_2} = P.\cos \alpha = 9,8.\cos 30 = 5\sqrt 3 N\end{array} \right.\)
Mà lực ép \(\overrightarrow N \) có độ lớn bằng \(\overrightarrow Q \Rightarrow N = 5\sqrt 3 N\)