Chọn câu sai: Khi một chất điểm chuyển động thẳng biến đổi điều thì nó:
A, C, D - đúng
B - sai vì trong chuyển động biến đổi đều vận tốc thay đổi theo phương trình: \(v = {v_0} + at\)
Một vật chuyển động thẳng có phương trình \(x = 30 + 4t - {t^2}(m;s)\) . Tính quãng đường vật đi từ thời điểm $t_1 = 1s$ đến thời điểm $t_2 = 3s$?
Từ phương trình tọa độ - thời gian ta thu được phương trình vận tốc \(v = 4 - 2t \to v = 0 \leftrightarrow t = 2{\rm{s}}\) , vật sẽ đổi chiều chuyển động sau $2s$.
Do vậy quãng đường đi được của vật được tính:
\(s = {s_1} + {s_2} = \left| {{x_2} - {x_1}} \right| + \left| {{x_3} - {x_2}} \right| = \left| {4 - 3} \right| + \left| {3 - 4} \right| = 2m\)
Trạng thái đứng yên hay chuyển động có tính tương đối vì trạng thái chuyển động
Trạng thái đứng yên hay chuyển động có tính tương đối vì trạng thái chuyển động được quan sát trong nhiều hệ quy chiếu khác nhau.
Hãy nêu đầy đủ các tính chất đặc trưng cho chuyển động thẳng nhanh dần đều
Các đặc trưng của chuyển động thẳng nhanh dần đều gồm cả A, B và C
Véctơ vận tốc trung bình của vật được xác định bởi biểu thức:
Véctơ vận tốc trung bình của vật được xác định bởi biểu thức: \(\overrightarrow {{v_{tb}}} = \frac{{\Delta \overrightarrow x }}{{\Delta t}}\)
Nhận xét nào sau đây của hành khách ngồi trên đoàn tàu đang chạy là không đúng?
A, C, D - đúng
B - sai vì: Khi hành khách ngồi trên đoàn tàu đang chạy sẽ thấy đầu tàu đứng yên so với toa tàu
Từ thực tế, hãy xem trường hợp nào dưới đây, quỹ đạo chuyển động của vật là một đường thẳng?
A- quỹ đạo của hòn đá có dạng cong
B- đường từ Hà Nội - TP. HCM có nhiều khúc quanh co, ngoằn nghèo => quỹ đạo của xe oto không phải là đường thẳng
C- quỹ đạo của viên bi là một đường thẳng
D- quỹ đạo của tờ giấy là đường cong, ngoằn nghèo
Đứng ở Trái Đất ta sẽ thấy:
Khi đứng ở Trái Đất, ta sẽ thấy
+ Trái Đất đứng yên
+ Mặt Trăng và Mặt Trời quay quanh Trái Đất
Trong công thức tính quãng đường đi được của chuyển động thẳng chậm dần đều cho đến khi dừng lại: \(s = {v_0}t + \frac{1}{2}a{t^2}\) thì:
Trong chuyển động thẳng chậm dần đều thì vận tốc và gia tốc ngược dấu nhau, quãng đường là đại lượng không âm
Phương trình nào sau đây cho biết vật chuyển động nhanh dần đều dọc theo chiều dương của trục x?
Chuyển động nhanh dần đều thì a và v cùng dấu, theo chiều dương của Ox nên a và v phải dương => Phương án C phù hợp với yêu cầu của đề bài
Vật chuyển động thẳng có phương trình \(x = 2{t^2} - 4t + 10(m;s)\) . Vật sẽ dừng lại tại vị trí :
Phương trình vận tốc của vật:
\(\begin{array}{l}v = - 4 + 4t\\v = 0 \leftrightarrow - 4 + 4t = 0 \to t = 1{\rm{s}}\end{array}\)
Vật sẽ dừng lại tại vị trí \(x = {2.1^2} - 4.1 + 10 = 8m\)
Một chiếc thuyền chuyển động trên đoạn đường \(AB\) dài \(60km\). Vận tốc của thuyền là \(15km/h\) so với dòng nước yên lặng. Tính vận tốc dòng chảy của nước biết thời gian để thuyền đi từ \(A\) đến \(B\) rồi quay lại \(A\) là \(9\) tiếng?
Ta có:
+ Thuyền (1)
+ Dòng nước (2)
+ Bờ sông (3)
+ Vận tốc của thuyền (1) so với dòng nước (2): \({v_{12}} = 15km/h\)
+ Vận tốc của dòng nước (2) so với bờ (3): \({v_{23}}\)
+ Vận tốc của thuyền (1) so với bờ (2): \({v_{13}}\)
- Khi thuyền đi xuôi dòng: \({v_{13}} = {v_{12}} + {v_{23}}\)
Khi thuyền đi ngược dòng: \(v{'_{13}} = {v_{12}} - {v_{23}}\)
- Gọi \({t_1},{t_2}\) lần lượt là thời gian đi và về của thuyền, ta có:
\(\left\{ \begin{array}{l}{t_1} = \frac{{AB}}{{{v_{13}}}} = \frac{{AB}}{{{v_{12}} + {v_{23}}}}\\{t_2} = \frac{{AB}}{{v{'_{13}}}} = \frac{{AB}}{{{v_{12}} - {v_{23}}}}\end{array} \right.\)
Theo đầu bài, ta có:
\(\begin{array}{l}{t_1} + {t_2} = 9 \to \frac{{AB}}{{{v_{12}} + {v_{23}}}} + \frac{{AB}}{{{v_{12}} - {v_{23}}}} = 9\\ \leftrightarrow \frac{{60}}{{15 + {v_{23}}}} + \frac{{60}}{{15 - {v_{23}}}} = 9\\ \leftrightarrow 60\left( {15 - {v_{23}}} \right) + 60\left( {15 + {v_{23}}} \right) = 9\left( {{{15}^2} - v_{23}^2} \right)\\ \to {v_{23}} = 5km/h\end{array}\)
Một chiếc thuyền chạy ngược dòng nước từ \(A\) đến \(B\) mất \(6\) giờ, xuôi dòng mất \(3\) giờ. Nếu tắt máy để thuyền tự trôi theo dòng nước thì đi từ bến \(A\) đến bến \(B\) mất mấy giờ?
Ta có:
+ Thuyền (1)
+ Dòng nước (2)
+ Bờ sông (3)
+ Vận tốc của thuyền (1) so với dòng nước (2): \({v_{12}}\)
+ Vận tốc của dòng nước (2) so với bờ (3): \({v_{23}}\)
+ Vận tốc của thuyền (1) so với bờ (2): \({v_{13}}\)
Thuyền tắt máy trôi theo dòng tương đương thuyền chuyển động với vận tốc \({v_{23}}\)
- Khi thuyền ngược dòng: \({v_{13}} = {v_{12}} - {v_{23}}\)
Khi xuôi dòng: \(v{'_{13}} = {v_{12}} + {v_{23}}\)
- Gọi \({t_1},{t_2}\) lần lượt là thời gian đi ngược dòng và đi xuôi dòng của thuyền, ta có:
\(\left\{ \begin{array}{l}{v_{13}} = \frac{{AB}}{{{t_1}}} = \frac{{AB}}{6}{\rm{ }}\left( 1 \right)\\v{'_{13}} = \frac{{AB}}{{{t_2}}} = \frac{{AB}}{3}{\rm{ }}\left( 2 \right)\end{array} \right.\)
Lấy \(\left( 1 \right) - \left( 2 \right) = 2{v_{23}} = \frac{{AB}}{6} \to {v_{23}} = \frac{{AB}}{{12}}\)
=> Nếu tắt máy để thuyền tự trôi theo dòng nước thì đi từ bến \(A\) đến bến \(B\) mất thời gian: \(t = \frac{{AB}}{{{v_{23}}}} = \frac{{AB}}{{\frac{{AB}}{{12}}}} = 12\) giờ
Xét một vật chuyển động trên một đường thẳng và không đổi hướng, gọi a là gia tốc, vo là vận tốc ban đầu, v là vận tốc tại thời điểm nào đó. Trong các kết luận sau, kết luận nào đúng?
Trong chuyển động thẳng nhanh dần đều thì a và v luôn cùng dấu
Một chiếc thuyền xuôi dòng từ \(A\) đến \(B\), vận tốc của dòng nước \(5km/h\). Chiều dài từ \(A\) đến \(B\) là bao nhiêu? Biết thuyền xuôi dòng mất \(2\) giờ và ngược dòng mất \(3\) giờ trên cùng đoạn đường AB
Ta có:
+ Thuyền (1)
+ Dòng nước (2)
+ Bờ sông (3)
+ Vận tốc của thuyền (1) so với dòng nước (2): \({v_{12}}\)
+ Vận tốc của dòng nước (2) so với bờ (3): \({v_{23}}\)
+ Vận tốc của thuyền (1) so với bờ (2): \({v_{13}}\)
- Khi xuôi dòng: \(v{'_{13}} = {v_{12}} + {v_{23}}\)
Khi thuyền ngược dòng: \({v_{13}} = {v_{12}} - {v_{23}}\)
- Gọi \({t_1},{t_2}\) lần lượt là thời gian đi xuôi dòng và đi ngược dòng của thuyền, ta có:
\(\left\{ \begin{array}{l}{t_1} = \frac{{AB}}{{{v_{13}}}} = \frac{{AB}}{{{v_{12}} + {v_{23}}}} = 2{\rm{ }}\left( 1 \right)\\{t_2} = \frac{{AB}}{{v{'_{13}}}} = \frac{{AB}}{{{v_{12}} - {v_{23}}}} = 3{\rm{ }}\left( 2 \right)\end{array} \right.\)
Từ (1) và (2), ta suy ra:
\(\begin{array}{l}2{v_{12}} + 2{v_{23}} = 3{v_{12}} - 3{v_{23}}\\ \to {v_{12}} = 5{v_{23}} = 5.5 = 25km/h\end{array}\)
Thế vào (1), ta được: \(AB = 2\left( {{v_{12}} + {v_{23}}} \right) = 2\left( {25 + 5} \right) = 60km\)
Một chiếc xe lửa đang chuyển động, quan sát chiếc va li đặt trên giá để hàng hóa, nếu nói rằng:
1. Va li đứng yên so với thành toa.
2. Va li chuyển động so với đầu máy.
3. Va li chuyển động so với đường ray.
Thì nhận xét nào ở trên là đúng?
Các nhận xét đúng là:
+ Va li đứng yên so với thành toa.
+ Va li chuyển động so với đường ray.
Một vật rơi tự do từ độ cao h so với mặt đất, cho gia tốc rơi tự do g = 10 m/s2. Biết trong 1 s cuối cùng vật rơi được quãng đường bằng với quãng đường rơi được trong \(\sqrt 3 s\) đầu tiên. Giá trị của h bằng
Quãng đường đi được của vật rơi tự do trong thời gian \(\sqrt{3}s\)đầu tiên
\(s=\frac{1}{2}.g.{{t}^{2}}=\frac{1}{2}.g.3=1,5g\)
Trong giây cuối cùng quãng đường vật đi được là
\({{S}_{c}}=h-\frac{1}{2}.g.{{({{t}_{h}}-1)}^{2}}\)
với \({{t}_{h}}\) là thời gian vật rơi chạm đất: \({{t}_{h}}=\sqrt{\frac{2h}{g}}\text{ }\)
Vậy ta có: \({{S}_{c}}=h-\frac{1}{2}.g.{{\left( \sqrt{\frac{2h}{g}}-1 \right)}^{2}}=\sqrt{2gh}-\frac{1}{2}g\)
Mà \(s={{S}_{c}}\) nên ta có:
\(\sqrt{2gh}-0,5g=1,5g\Leftrightarrow \sqrt{2gh}=2g\Leftrightarrow h=2g=20m\)
Trên một tuyến đường xe bus BRT, các xe bus chuyển động theo một chiều và cách đều nhau \(5km\). Một người đi xe đạp chuyển động thẳng đều trên tuyến đường này. Nếu đi theo một chiều thì tại thời điểm \(t = 0\), người đi xe đạp gặp xe bus thứ nhất, đến thời điểm \(t = 1h\) người này gặp xe bus thứ \(12\). Nếu đi theo chiều ngược lại thì thời điểm \(t = 0\), người đi xe đạp gặp xe bus thứ nhất, đến thời điểm \(t = 1h\) người này gặp xe bus thứ \(6\). Nếu người này đứng yên bên đường thì trong \(1h\) tính từ thời điểm gặp xe bus thứ nhất, người này còn gặp được bao nhiêu xe bus nữa? Bỏ qua kích thước của xe bus và xe đạp.
Ta có:
+ Người đi xe đạp (1)
+ Xe bus (2)
+ Đường (3)
+ Vận tốc của người đi xe đạp (1) so với xe bus (2): \({v_{12}}\)
+ Vận tốc của xe bus (2) so với đường (3): \({v_{23}}\)
+ Vận tốc của người đi xe đạp (1) so với đường (2): \({v_{13}}\)
Theo đề bài, ta có:
Sau \(1h\) gặp xe bus số \(12\) => Xe đạp chuyển động ngược chiều xe bus
Sau \(1h\) gặp xe bus số \(6\) => Xe đạp chuyển động cùng chiều xe bus
Xe đạp chuyển động ngược chiều với xe bus:
\(\begin{array}{l}{v_{13}} = {v_{23}} - {v_{12}}\\ \to {v_{12}} = {v_{23}} + {v_{13}} = \frac{S}{t} = \frac{{11.5}}{1} = 55km/h{\rm{ }}\left( 1 \right)\end{array}\)
Người đi xe đạp chuyển động cùng chiều với đoàn xe bus:
\(\begin{array}{l}{v_{13}} = {v_{23}} + {v_{12}}\\ \to {v_{12}} = {v_{23}} - {v_{13}} = \frac{S}{t} = \frac{{5.5}}{1} = 25km/h{\rm{ }}\left( 2 \right)\end{array}\)
Từ (1) và (2), ta suy ra: \({v_{23}} = 40km/h\)
=> Nếu người đó đứng yên thì số xe bus đi qua là: \(\frac{{40}}{5} = 8\)
Chất điểm chuyển động trên đường thẳng, vật xuất phát từ gốc tọa độ chuyển động theo chiều dương, tại các thời điểm khác nhau vật có vị trí tọa độ như bảng dưới:
Phương trình chuyển động của vật là:
Ta có:
+ Chất điểm chuyển động trên đường thẳng, vật xuất phát từ gốc tọa độ chuyển động theo chiều dương
+ Vận tốc: \(v = \frac{{\Delta {x_1}}}{{\Delta {t_1}}} = \frac{{2,5 - 0}}{{1 - 0}} = 2,5(m/s)\)
+ Tại thời điểm ban đầu: \({t_0} = 0;{x_0} = 0\)
=> Phương trình chuyển động của vật: \(x = {x_0} + vt = 2,5t\)
Một chất điểm chuyển động thẳng đều có đồ thị tọa độ thời gian như hình vẽ. Phương trình chuyển động của vật là:
Phương trình chuyển động: \(x = {x_0} + vt\)
Từ đồ thị x-t, ta có:
+ Tại thời điểm \({t_0} = 0\) : \({x_0} = 100km\)
+ Tại \(t = 1h\): \(x = 80km = {x_0} + v.1 \to v = \frac{{80 - 100}}{1} = - 20(km/h)\)
=> phương trình chuyển động của vật: \(x = 100 - 20t{\rm{ }}(km)\)