Động năng được tính bằng biểu thức:
Biểu thức tính động năng : \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)
Biểu thức nào sau đây xác định thế năng hấp dẫn của một vật có khối lượng m, ở độ cao h so với mặt đất. Chọn gốc thế năng ở mặt đất
Nếu chọn gốc thế năng là mặt đất thì công thức tính thế năng trọng trường của một vật ở độ cao h là:
\({{\rm{W}}_t} = mgh\)
Động năng là đại lượng:
Ta có biểu thức tính động năng: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)
=> Động năng là đại lượng vô hướng, luôn dương hoặc bằng không
Chọn phương án sai. Khi một vật từ độ cao z, với cùng vận tốc ban đầu, bay xuống đất theo những con đường khác nhau thì:
A, C, D – đúng
B – sai vì : thời gian rơi phụ thuộc vào gia tốc rơi tự do và vận tốc ban đầu theo phương thẳng đứng. Ở đây vận tốc ban đầu như nhau nhưng đường đi khác nhau nên vận tốc ban đầu theo phương thẳng đứng khác nhau.
Đơn vị nào sau đây không phải đơn vị của động năng?
Ta có, động năng: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)
Các đơn vị của động năng:
\(J = kg.{m^2}/{s^2} = N.m\) (do có \(kg.m/{s^2} = N\) )
=> Phương án D: \(N.s\) không phải đơn vị của động năng
Một vật được ném thẳng đứng từ dưới lên cao. Trong quá trình chuyển động của vật thì:
Ta có :
Khi một vật được ném lên, độ cao của vật tăng dần nên thế năng tăng.
Trong quá trình chuyển động của vật từ dưới lên, trọng lực luôn hướng ngược chiều chuyển động nên nó là lực cản, do đó trọng lực sinh công âm.
Công thức nào sau đây thể hiện mối liên hệ giữa động lượng và động năng?
Ta có :
+ Động lượng : \(p = mv\)
+ Động năng : \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\)
=> \({{\rm{W}}_{\rm{d}}} = \dfrac{{{p^2}}}{{2m}}\)
Một ô tô khối lượng m đang chuyển động với vận tốc \(\vec v\)thì tài xế tắt máy. Công của lực ma sát tác dụng lên xe làm xe dừng lại là:
Động năng của ô tô trước khi tắt máy là: ${W_d} = \frac{{m{v^2}}}{2}$
Động năng của ô tô sau khi dừng lại là: \(W{'_d} = {\text{ }}0\)
Áp dụng định lí biến thiên động năng ta có: \(A = 0 - \frac{{m{v^2}}}{2} = - \frac{{m{v^2}}}{2}\).
Thế năng hấp dẫn là đại lượng:
Ta có, thế năng hấp dẫn là đại lượng vô hướng, có thể âm, dương hoặc bằng 0
Một vật có khối lượng m = 400 g và động năng 20 J. Khi đó vận tốc của vật là:
Từ công thức tính động năng ta có:
\({W_d} = \frac{1}{2}m{v^2} \Rightarrow v = \sqrt {\frac{{2.{W_d}}}{m}} = \sqrt {\frac{{2.20}}{{0,4}}} = 10m/s = 36km/h\)
Đại lượng vật lí nào sau đây phụ thuộc vào vị trí của vật trong trọng trường?
Đại lượng phụ thuộc vào vị trí của vật trong trọng trường là thế năng
Một người có khối lượng $50 kg$, ngồi trên ô tô đang chuyển động với vận tốc $72 km/h$. Động năng của người đó với ô tô là:
Ta có, vận tốc của người so với ô – tô là: \(v = 0m/s\) (do người đang ngồi trên ô-tô)
=> Động năng của người so với ô-tô là: \({{\rm{W}}_d} = \dfrac{1}{2}m{v^2} = 0J\)
Xét một vật chuyển động thẳng biến đổi đều theo phương nằm ngang. Đại lượng nào sau đây không đổi?
Khi vật chuyển động theo phương ngang thì vị trí trọng trường của vật không đổi => thế năng không đổi
Nếu khối lượng của vật giảm 4 lần và vận tốc tăng lên 2 lần, thì động năng của vật sẽ:
Công thức tính động năng: Wđ =\(\dfrac{1}{2}m{v^2}\). (*)
Khi khối lượng giảm 4 lần thì: \(m' = \dfrac{m}{4}\), và vận tốc tăng 2 lần thì: \(v' = 2v\).
Thay m’ và v’ vào công thức (*) ta có:
W’đ =\(\dfrac{1}{2}m'{v'^2} = \dfrac{1}{2}\dfrac{m}{4}{\left( {2v} \right)^2} = \dfrac{1}{2}\dfrac{m}{4}.4.{v^2} = \dfrac{1}{2}m{v^2} = \)Wđ.
Hai vật có khối lượng là m và $2m$ đặt ở hai độ cao lần lượt là $2h$ và $h$. Thế năng hấp dẫn của vật thứ nhất so với vật thứ hai là:
Ta có:
Thế năng của vật 1 có giá trị là: \({W_{t1}} = m.g.2.h = 2mgh\) (1).
Thế năng của vật 2 có giá trị là: \({W_{t2}} = 2.m.g.h = 2mgh\) (2).
=> Thế năng vật 1 bằng thế năng vật 2
Một thang máy có khối lượng 1 tấn chuyển động từ tầng cao nhất cách mặt đất 100m xuống tầng thứ 10 cách mặt đất 40m. Nếu chọn gốc thế năng tại tầng 10, lấy g = 9,8m/s2. Thế năng của thang máy ở tầng cao nhất là:
Ta có gốc thế năng tại tầng thứ 10 nên khoảng cách từ thang máy khi ở tầng cao nhất đến gốc là: z =100 – 40 = 60m.
Thế năng của thang máy là: \({W_t} = mgz = 1000.9,8.60 = 588kJ\).
Một buồng cáp treo chở người có khối lượng tổng cộng \(800kg\) đi từ vị trí xuất phát cách mặt đất \(10m\) tới một trạm dừng trên núi ở độ cao \(550m\) sau đó lại tiếp tục tới một trạm khác cao hơn. Lấy \(g = 10m/{s^2}\). Công do trọng lực thực hiện khi buồng cáp treo di chuyển từ vị trí xuất phát tới trạm dừng thứ nhất là:
Chọn mốc thế năng tại mặt đất
+ Tại vị trí xuất phát, cáp treo có độ cao \({z_1} = 10m\)
+ Tại trạm thứ nhất, cáp treo có độ cao \({z_2} = 550m\)
Công của trọng lực bằng độ giảm thế năng:
\(\begin{array}{l}{A_P} = {{\rm{W}}_{{t_1}}} - {{\rm{W}}_{{t_2}}} = mg{z_1} - mg{z_2}\\ = mg\left( {{z_1} - {z_2}} \right)\\ = 800.10\left( {10 - 550} \right)\\ = - 4320000J = - {432.10^4}J\end{array}\)
Một vật có khối lượng \(2kg\) được đặt ở vị trí trong trọng trường và có thế năng tại đó \({{\rm{W}}_{{t_1}}} = 500J\). Thả vật rơi tự do đến mặt đất có thế năng \({{\rm{W}}_{{t_2}}} = - 900J\). Lấy \(g = 10m/{s^2}\). So với mặt đất vật đã rơi từ độ cao
Ta có:
+ Biến thiên thế năng chính bằng công của trọng lực: \({{\rm{W}}_{{t_1}}} - {{\rm{W}}_{{t_2}}} = {A_P}\) (1)
+ \(\overrightarrow P \) hợp với phương rơi một góc \(\alpha = {0^0}\)
Ta suy ra công của trọng lực: \({A_P} = P.h = mgh\) (2)
Từ (1) và (2), ta suy ra: \({{\rm{W}}_{{t_1}}} - {{\rm{W}}_{{t_2}}} = mgh\)
\( \Rightarrow h = \dfrac{{{{\rm{W}}_{{t_1}}} - {{\rm{W}}_{{t_2}}}}}{{mg}} = \dfrac{{500 - \left( { - 900} \right)}}{{2.10}} = 70m\)
Vậy so với mặt đất, vật đã rơi từ độ cao \(h = 70m\)
Tìm câu sai. Động năng của một vật không đổi khi
A, B, C - đúng
D - sai vì: khi vật chuyển động biến đổi đều thì vận tốc của vật thay đổi => động năng cũng thay đổi do động năng tỉ lệ thuận với bình phương vận tốc.
Có hai vật $m_1$ và $m_2$ cùng khối lượng $2m$, chuyển động thẳng đều cùng chiều, vận tốc $m_1$ so với $m_2$ có độ lớn bằng $v$, vận tốc của $m_2$ so với người quan sát đứng yên trên mặt đất cũng có độ lớn bằng $v$. Kết luận nào sau đây là sai?
Trong hệ quy chiếu gắn với quan sát, vật $m_1= 2 m$ có vận tốc bằng $2v$ nên động năng của vật là:
\({{\rm{W}}_d} = \dfrac{{{m_1}{{\left( {2v} \right)}^2}}}{2} = \dfrac{{8m{v^2}}}{2} = 4m{v^2}\)
=> Phương án C - sai