Từ độ cao 20m, phải ném một vật thẳng đứng với vận tốc v0 bằng bao nhiêu để vật này tới mặt đất sớm hơn 1s so với vật rơi tự do
Các phương trình chuyển động:
+ PT chuyển động rơi tự do: \({s_1} = \frac{1}{2}g{t^2} = 5{t^2}\) (1)
+ PT chuyển động khi vật bị ném: \({s_2} = {v_0}t' + \frac{1}{2}gt{'^2} = {v_0}t + 5t{'^2}\) (2)
Ta có, thời gian vật rơi tự do chạm đất:\({s_1} = 5{t^2} = 20 \to t = 2{\rm{s}}\)
Theo đề : \(t - t' = 1 \to t' = 1{\rm{s}}\)
Thay vào (2) ta được : \(20 = 5 + {v_0} \to {v_0} = 15m/s\)
Một vật rơi tự do tại nơi có \(g = 10m/{s^2}\). Trong \(2\) giây cuối vật rơi được \(180m\). Tính thời gian rơi và độ cao buông vật?
+ Trong \(2\left( s \right)\) cuối cùng quãng đường vật đi được là \(180{\rm{ }}m\) ta có:
\(\begin{array}{l}\Delta S = {S_t} - {S_{t - 2}} \\= 180 = \dfrac{{g{t^2}}}{2} - \dfrac{{g.{{\left( {t - 2} \right)}^2}}}{2} \\\Rightarrow {t^2} - {\left( {t - 2} \right)^2} = 36\\ \Rightarrow 4t -4 = 36 \Rightarrow t = 10\left( s \right)\end{array}\)
+ Độ cao buông vật là: \(s = \dfrac{{g{t^2}}}{2}\) $= 500 m$
Hai giọt nước rơi cách nhau 1s. Tìm khoảng cách giữa hai giọt sau khi giọt thứ 2 rơi được 1s? Lấy \(g = 10m/{s^2}\).
Giả sử giọt thứ nhất rơi trước giọt thứ 2, khi đó ta có sau khi giọt thứ 2 rơi được 1s thì giọt thứ nhất rơi được 2s
Vậy khoảng cách giữa chúng khi giọt thứ 2 rơi được 1s là: \(\Delta s = {s_1} - {s_2} = \frac{{g{t_1}^2}}{2} - \frac{{g.{t_2}^2}}{2} = 10.\frac{{{2^2}}}{2} - 10.\frac{{{1^2}}}{2} = 15\left( m \right)\)
Một vật rơi tự do từ độ cao h so với mặt đất, cho gia tốc rơi tự do g = 10 m/s2. Biết trong 1 s cuối cùng vật rơi được quãng đường bằng với quãng đường rơi được trong \(\sqrt 3 s\) đầu tiên. Giá trị của h bằng
Quãng đường đi được của vật rơi tự do trong thời gian \(\sqrt{3}s\)đầu tiên
\(s=\frac{1}{2}.g.{{t}^{2}}=\frac{1}{2}.g.3=1,5g\)
Trong giây cuối cùng quãng đường vật đi được là
\({{S}_{c}}=h-\frac{1}{2}.g.{{({{t}_{h}}-1)}^{2}}\)
với \({{t}_{h}}\) là thời gian vật rơi chạm đất: \({{t}_{h}}=\sqrt{\frac{2h}{g}}\text{ }\)
Vậy ta có: \({{S}_{c}}=h-\frac{1}{2}.g.{{\left( \sqrt{\frac{2h}{g}}-1 \right)}^{2}}=\sqrt{2gh}-\frac{1}{2}g\)
Mà \(s={{S}_{c}}\) nên ta có:
\(\sqrt{2gh}-0,5g=1,5g\Leftrightarrow \sqrt{2gh}=2g\Leftrightarrow h=2g=20m\)