Cho tích phân $I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} ,$ nếu đặt $\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = g'\left( x \right){\rm{d}}x\end{array} \right.$ thì
Đặt $\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = g'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = f'\left( x \right){\rm{d}}x\\v = g\left( x \right)\end{array} \right.,$ khi đó $I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .$
Để tính $I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\,\cos x\,{\rm{d}}x} $ theo phương pháp tích phân từng phần, ta đặt
Đặt $\left\{ \begin{array}{l}u = {x^2}\\{\rm{d}}v = \cos x\,{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = 2x\,{\rm{d}}x\\v = \sin x\end{array} \right.,$ khi đó $I = \left. {{x^2}\sin x} \right|_0^{\dfrac{\pi }{2}} - 2\int\limits_0^{\dfrac{\pi }{2}} {x\sin x\,{\rm{d}}x} .$
Cho $f\left( x \right),\,\,g\left( x \right)$ là hai hàm số có đạo hàm liên tục trên đoạn $\left[ {0;1} \right]$ và thỏa mãn điều kiện $\int\limits_0^1 {g\left( x \right).f'\left( x \right){\rm{d}}x} = 1,\int\limits_0^1 {g'\left( x \right).f\left( x \right){\rm{d}}x} = 2.$ Tính tích phân $I = \int\limits_0^1 {{{\left[ {f\left( x \right).g\left( x \right)} \right]}^\prime }\,{\rm{d}}x} .$
Đặt $\left\{ \begin{array}{l}u = g\left( x \right)\\{\rm{d}}v = f'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = g'\left( x \right){\rm{d}}x\\v = f\left( x \right)\end{array} \right..$
Khi đó $\int\limits_0^1 {g\left( x \right).f'\left( x \right){\rm{d}}x} = \left. {\left[ {g\left( x \right).f\left( x \right)} \right]} \right|_0^1 - \int\limits_0^1 {g'\left( x \right).f\left( x \right){\rm{d}}x} \Leftrightarrow \left. {\left[ {g\left( x \right).f\left( x \right)} \right]} \right|_0^1 = 3.$
Mặt khác $I = \int\limits_0^1 {{{\left[ {f\left( x \right).g\left( x \right)} \right]}^\prime }\,{\rm{d}}x} = \left. {\left[ {f\left( x \right).g\left( x \right)} \right]} \right|_0^1\,\, \Rightarrow \,\,I = 3.$
Biết \(\int\limits_2^{e + 1} {\dfrac{{\ln \left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}dx = a + b{e^{ - 1}}} \) với \(a,b \in \mathbb{Z}.\) Chọn khẳng định đúng trong các khẳng định sau:
Đặt \(\left\{ \begin{array}{l}\ln \left( {x - 1} \right) = u\\\dfrac{1}{{{{\left( {x - 1} \right)}^2}}}dx = dv\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{x - 1}}dx = du\\ - \dfrac{1}{{x - 1}} = v\end{array} \right.\)
Ta có \(\int\limits_2^{e + 1} {\dfrac{{\ln \left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}dx = \ln \left( {x - 1} \right).\left. {\left( { - \dfrac{1}{{x - 1}}} \right)} \right|} _2^{e + 1} + \int\limits_2^{e + 1} {\dfrac{1}{{{{\left( {x - 1} \right)}^2}}}dx} \)
\( = - \dfrac{1}{e} - \left. {\dfrac{1}{{x - 1}}} \right|_2^{e + 1} = - \dfrac{1}{e} - \dfrac{1}{e} + 1 = 1 - 2.{e^{ - 1}}\)
Suy ra \(a = 1;\,\,\,b = - 2 \Rightarrow a + b = - 1.\)
Cho \(\int\limits_0^1 {\left( {1 + 3x} \right)f'\left( x \right)dx} = 2019;\) \(4f\left( 1 \right) - f\left( 0 \right) = 2020.\) Tính \(\int\limits_0^{\frac{1}{3}} {f\left( {3x} \right)dx.} \)
Xét \(\int\limits_0^1 {\left( {1 + 3x} \right)f'\left( x \right)dx} = 2019\)
Đặt \(\left\{ \begin{array}{l}1 + 3x = u\\f'\left( x \right)dx = dv\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3dx = du\\f\left( x \right) = v\end{array} \right.\)
Suy ra \(\int\limits_0^1 {\left( {1 + 3x} \right)f'\left( x \right)dx} = \left. {\left( {1 + 3x} \right)f\left( x \right)} \right|_0^1 - 3\int\limits_0^1 {f\left( x \right)dx} \)
\( = 4f\left( 1 \right) - f\left( 0 \right) - 3\int\limits_0^1 {f\left( x \right)dx} = 2020 - 3\int\limits_0^1 {f\left( x \right)dx} = 2019\)
\( \Leftrightarrow \int\limits_0^1 {f\left( x \right)dx} = \dfrac{1}{3}\)
Xét \(\int\limits_0^{\dfrac{1}{3}} {f\left( {3x} \right)dx} \), đặt \(3x = t \Leftrightarrow 3dx = dt \Leftrightarrow dx = \dfrac{{dt}}{3}\).
Đổi cận : \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{1}{3} \Rightarrow t = 1\end{array} \right.\).
Suy ra \(\int\limits_0^{\dfrac{1}{3}} {f\left( {3x} \right)dx} = \dfrac{1}{3}\int\limits_0^1 {f\left( t \right)dt} = \dfrac{1}{3}.\int\limits_0^1 {f\left( x \right)dx} = \dfrac{1}{3}.\dfrac{1}{3} = \dfrac{1}{9}\)
Cho \(y = f\left( x \right)\) là một hàm số bất kỳ có đạo hàm trên \(\mathbb{R},\) đặt \(I = \int\limits_0^1 {xf'\left( x \right)dx} .\) Khẳng đinh nào dưới đây đúng?
Ta có: \(I = \int\limits_0^1 {xf'\left( x \right)dx} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\)
\( \Rightarrow I = \left. {\left[ {xf\left( x \right)} \right]} \right|_0^1 - \int\limits_0^1 {f\left( x \right)dx} \) \( = f\left( 1 \right) + \int\limits_1^0 {f\left( x \right)dx} .\)
Biết rằng \(\int\limits_1^a {\ln xdx} = 1 + 2a\,\,\left( {a > 1} \right)\). Khẳng định nào dưới đây là khẳng định đúng?
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dx}}{x}\\v = x\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \int\limits_1^a {\ln xdx} = \left. {x\ln x} \right|_1^a - \int\limits_1^a {dx} = \left. {\left( {x\ln x - x} \right)} \right|_1^a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a\ln a - a - 1\ln 1 + 1 = 1 - a + a\ln a\\ \Rightarrow 1 - a + a\ln a = 1 + 2a\\ \Leftrightarrow 3a = a\ln a \Leftrightarrow \ln a = 3 \Leftrightarrow a = {e^3} \approx 20,1 \in \left( {18;21} \right)\end{array}\)
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f\left( 2 \right) = 16\) và \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính \(\int\limits_0^1 {x.f'\left( {2x} \right)dx} \).
Đặt \(t = 2x \Rightarrow dt = 2dx\).
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2\end{array} \right.\), khi đó ta có: \(\int\limits_0^1 {x.f'\left( {2x} \right)dx} = \dfrac{1}{4}\int\limits_0^2 {tf'\left( t \right)dt} \).
Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).
\(\begin{array}{l} \Rightarrow \int\limits_0^2 {tf'\left( t \right)dt} = \left. {tf\left( t \right)} \right|_0^2 - \int\limits_0^2 {f\left( t \right)dt} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2f\left( 2 \right) - \int\limits_0^2 {f\left( x \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2.16 - 4 = 28\end{array}\)
Vậy \(\int\limits_0^1 {x.f'\left( {2x} \right)dx} = \dfrac{1}{4}.28 = 7\).
Cho \(f\left( x \right)\) là một hàm số có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( 1 \right) = 1\) và \(\int\limits_0^1 {f\left( t \right){\rm{dt}}} = \dfrac{1}{3}.\) Giá trị của tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right){\rm{d}}x} \) bằng:
Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right){\rm{d}}x} = 2\int\limits_0^{\frac{\pi }{2}} {\sin x\cos x.f'\left( {\sin x} \right){\rm{d}}x} \).
Đặt \(t = \sin x \Rightarrow du = \cos xdx\).
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\), khi đó ta có \(I = 2\int\limits_0^1 {tf'\left( t \right)dt} \).
Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).
\(\begin{array}{l} \Rightarrow I = 2\left( {\left. {tf\left( t \right)} \right|_0^1 - \int\limits_0^1 {f\left( t \right)dt} } \right)\\ \Leftrightarrow I = 2\left( {f\left( 1 \right) - \int\limits_0^1 {f\left( t \right)dt} } \right)\\ \Leftrightarrow I = 2\left( {1 - \dfrac{1}{3}} \right) = \dfrac{4}{3}\end{array}\)
Cho hàm số \(y = f\left( x \right)\) biết \(f\left( 0 \right) = \dfrac{1}{2}\) và \(f'\left( x \right) = x{e^{{x^2}}}\) với mọi \(x \in \mathbb{R}\). Khi đó \(\int\limits_0^1 {xf\left( x \right)dx} \) bằng:
Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \dfrac{{{x^2} - 1}}{2}\end{array} \right.\).
\(\begin{array}{l} \Rightarrow \int\limits_0^1 {xf\left( x \right)dx} = \left. {\dfrac{{{x^2} - 1}}{2}f\left( x \right)} \right|_0^1 - \int\limits_0^1 {\dfrac{{{x^2} - 1}}{2}f'\left( x \right)dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}f\left( 0 \right) - \dfrac{1}{2}\int\limits_0^1 {\left( {{x^2} - 1} \right).x{e^{{x^2}}}dx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{1}{2}.\dfrac{1}{2} - \dfrac{1}{2}I = \dfrac{1}{4} - \dfrac{1}{2}I\end{array}\)
Đặt \(t = {x^2} \Rightarrow dt = 2xdx\).
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có:
\(\begin{array}{l}I = \dfrac{1}{2}\int\limits_0^1 {\left( {t - 1} \right){e^t}dt} = \dfrac{1}{2}\left( {\int\limits_0^1 {t{e^t}dt} - \int\limits_0^1 {{e^t}dt} } \right)\\\,\,\,\, = \dfrac{1}{2}\left( {\left. {t.{e^t}} \right|_0^1 - \int\limits_0^1 {{e^t}dt} - \int\limits_0^1 {{e^t}dt} } \right)\\\,\,\,\, = \dfrac{1}{2}\left( {e - \left. {2{e^t}} \right|_0^1} \right) = \dfrac{1}{2}\left( {e - 2e + 2} \right) = \dfrac{{2 - e}}{2}\end{array}\)
Vậy \(\int\limits_0^1 {xf\left( x \right)dx} = \dfrac{1}{4} - \dfrac{1}{2}I = \dfrac{1}{4} - \dfrac{{2 - e}}{4} = \dfrac{{e - 1}}{4}\).
Cho \(\int\limits_1^2 {\left( {x + \dfrac{2}{x}} \right)\ln xdx} = \dfrac{a}{4} + b\ln 2 + c{\ln ^2}2\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\). Giá trị của \(a + b + c\) bằng
Ta có: \(\int\limits_1^2 {\left( {x + \dfrac{2}{x}} \right)\ln xdx} = \int\limits_1^2 {x\ln xdx} + 2\int\limits_1^2 {\dfrac{{\ln xdx}}{x}} = {I_1} + 2{I_2}\).
Xét \({I_1} = \int\limits_1^2 {x\ln xdx} \).
Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.\)
\(\begin{array}{l} \Rightarrow {I_1} = \left. {\dfrac{{{x^2}}}{2}\ln x} \right|_1^2 - \int\limits_1^2 {\dfrac{{{x^2}}}{2}.\dfrac{1}{x}dx} \\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}\int\limits_1^2 {xdx} \\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}.\left. {\dfrac{{{x^2}}}{2}} \right|_1^2\\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}.\left( {2 - \dfrac{1}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{3}{4}\end{array}\)
Xét \({I_2} = \int\limits_1^2 {\dfrac{{\ln xdx}}{x}} \).
Đặt \(t = \ln x \Rightarrow dt = \dfrac{{dx}}{x}\).
Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = \ln 1 = 0\\x = 2 \Rightarrow t = \ln 2\end{array} \right.\).
\( \Rightarrow {I_2} = \int\limits_0^{\ln 2} {tdt} = \left. {\dfrac{{{t^2}}}{2}} \right|_0^{\ln 2} = \dfrac{{{{\ln }^2}2}}{2}\).
\( \Rightarrow I = {I_1} + 2{I_2} = 2\ln 2 - \dfrac{3}{4} + {\ln ^2}2 = - \dfrac{3}{4} + 2\ln 2 + {\ln ^2}2\).
\( \Rightarrow a = - 3,\,\,b = 2,\,\,c = 1\).
Vậy \(a + b + c = - 3 + 2 + 1 = 0\).
Cho \(f\left( x \right)\) là hàm số có đạo hàm liên tục trên [0;1] và \(f\left( 1 \right) = - \dfrac{1}{{18}}\), \(\int\limits_0^1 {xf'\left( x \right)dx} = \dfrac{1}{{36}}\). Giá trị của \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:
Xét \(I = \int\limits_0^1 {xf'\left( x \right)dx} \).
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\).
\(\begin{array}{l} \Rightarrow I = \left. {xf\left( x \right)} \right|_0^1 - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow I = f\left( 1 \right) - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \dfrac{1}{{36}} = - \dfrac{1}{{18}} - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {f\left( x \right)dx} = - \dfrac{1}{{18}} - \dfrac{1}{{36}} = - \dfrac{1}{{12}}.\end{array}\)
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên [0;1], thỏa mãn \(\int\limits_0^1 {f\left( x \right)dx} = 3\) và \(f\left( 1 \right) = 4\). Tích phân \(\int\limits_0^1 {xf'\left( x \right)dx} \) có giá trị là:
Đặt \(\left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right.\).
\(\begin{array}{l} \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx} = \left. {xf\left( x \right)} \right|_0^1 - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx} = f\left( 1 \right) - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx} = 4 - 3 = 1.\end{array}\)
Chọn công thức đúng:
Công thức tính tích phân từng phần \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \)
Cho $\dfrac{\pi }{m} - \int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x} = 1.$ Khi đó giá trị $9{m^2} - 6$ bằng
Đặt $\left\{ \begin{array}{l}u = x\\{\rm{d}}v = \cos x\,{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = {\rm{d}}x\\v = \sin x\end{array} \right.,$ khi đó $\int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x} = \left. {x.\sin x} \right|_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\sin x\,{\rm{d}}x} $
$ = \dfrac{\pi }{2} + \left. {\cos x} \right|_0^{\dfrac{\pi }{2}} = \dfrac{\pi }{2} + \cos \dfrac{\pi }{2} - \cos 0 = \dfrac{\pi }{2} - 1.$
Suy ra $\dfrac{\pi }{m} - \int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x} = \dfrac{\pi }{m} - \dfrac{\pi }{2} + 1 = 1 \Rightarrow m = 2.$
Do đó \(9{m^2} - 6 = {9.2^2} - 6 = 30\).
Cho hàm số $y = f\left( x \right)$ thỏa mãn điều kiện $\int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x} = 1$ và $f\left( 1 \right) - 2f\left( 0 \right) = 2.$
Tính tích phân $I = \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x} .$
Đặt $\left\{ \begin{array}{l}u = \dfrac{1}{{x + 1}}\\{\rm{d}}v = f'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = - \dfrac{{{\rm{d}}x}}{{{{\left( {x + 1} \right)}^2}}}\\v = f\left( x \right)\end{array} \right.,$ khi đó $\int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x} = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x} $
Suy ra $1 = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + I \Leftrightarrow I = 1 - \left[ {\dfrac{{f\left( 1 \right)}}{2} - f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}\left[ {f\left( 1 \right) - 2f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}.2 = 0.$
Tích phân \(\int\limits_{0}^{\pi }{\left( 3x+2 \right){{\cos }^{2}}xdx}\) bằng:
\(\int\limits_{0}^{\pi }{\left( 3x+2 \right){{\cos }^{2}}xdx}=\frac{1}{2}\int\limits_{0}^{\pi }{\left( 3x+2 \right)\left( 1+\cos 2x \right)dx}=\frac{1}{2}\left[ \int\limits_{0}^{\pi }{\left( 3x+2 \right)dx}+\int\limits_{0}^{\pi }{\left( 3x+2 \right)\cos 2xdx} \right]=\frac{1}{2}\left( {{I}_{1}}+{{I}_{2}} \right)\)
Tính \({{I}_{1}}?\)
\({{I}_{1}}=\int\limits_{0}^{\pi }{\left( 3x+2 \right)dx}=\left. \left( \frac{3{{x}^{2}}}{2}+2x \right) \right|_{0}^{\pi }=\frac{3}{2}{{\pi }^{2}}+2\pi \)
Tính \({{I}_{2}}?\)
\({{I}_{2}}=\int\limits_{0}^{\pi }{\left( 3x+2 \right)\cos 2xdx}\)
Đặt \(\left\{ \begin{array}{l}u = 3x + 2\\dv = \cos 2xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 3dx\\v = \frac{1}{2}\sin 2x\end{array} \right.\)
\(\begin{array}{l} \Rightarrow {I_2} = \left. {\frac{1}{2}\left( {3x + 2} \right)\sin 2x} \right|_0^\pi - \frac{3}{2}\int\limits_0^\pi {\sin 2xdx} \\ = \left. {\frac{1}{2}\left( {3x + 2} \right)\sin 2x} \right|_0^\pi + \frac{3}{4}\left. {\cos 2x} \right|_0^\pi \\ = \frac{3}{4}\left( {1 - 1} \right) = 0\end{array}\)
Vậy \(I=\frac{1}{2}\left( \frac{3}{2}{{\pi }^{2}}+2\pi \right)=\frac{3}{4}{{\pi }^{2}}+\pi \)
Biết $\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{{x^2}dx}}{{{{(x\sin x + \cos x)}^2}}} = - \dfrac{{a\pi }}{{b + c\pi \sqrt 3 }} + d\sqrt 3 } $, với $a,b,c,d \in {Z^ + }$. Tính $P = a + b + c + d$.
$\begin{array}{l}\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{{x^2}dx}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} = \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}\dfrac{{x\cos xdx}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} = \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}\dfrac{{d\left( {x\sin x + \cos x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} \\ = - \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}d\left( {\dfrac{1}{{x\sin x + \cos x}}} \right)} = - \left. {\dfrac{x}{{\cos x}}.\dfrac{1}{{x\sin x + \cos x}}} \right|_0^{\dfrac{\pi }{3}} + \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{1}{{x\sin x + \cos x}}d\left( {\dfrac{x}{{\cos x}}} \right)} \\ = - \left. {\dfrac{x}{{\cos x\left( {x\sin x + \cos x} \right)}}} \right|_0^{\dfrac{\pi }{3}} + \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{1}{{{{\cos }^2}x}}dx} \\ = - \left. {\dfrac{x}{{\cos x\left( {x\sin x + \cos x} \right)}}} \right|_0^{\dfrac{\pi }{3}} + \left. {\tan x} \right|_0^{\dfrac{\pi }{3}} = - \dfrac{{\dfrac{\pi }{3}}}{{\dfrac{1}{2}\left( {\dfrac{\pi }{3}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2}} \right)}} + \sqrt 3 = \dfrac{{ - 4\pi }}{{\pi \sqrt 3 + 3}} + \sqrt 3 \\ = - \dfrac{{a\pi }}{{b + c\sqrt 3 }} + d\sqrt 3 \,\,\left( {a,b,c,d \in {Z^ + }} \right) \Rightarrow a = 4,b = 3,c = 1,d = 1 \Rightarrow a + b + c + d = 9\end{array}$
Tích phân \(\int\limits_{0}^{100}{x.{{e}^{2x}}dx}\) bằng
Ta đặt \(\left\{ \begin{array}{l}u = x\\{e^{2x}}dx = dv\end{array} \right. \Rightarrow \left\{ \begin{array}{l}dx = du\\v = \frac{1}{2}{e^{2x}}\end{array} \right.\)
Khi đó \(\int\limits_{0}^{100}{x.{{e}^{2x}}dx}=\left. \frac{1}{2}x.{{e}^{2x}} \right|_{0}^{100}-\frac{1}{2}\int\limits_{0}^{100}{{{e}^{2x}}dx}=\left. \frac{1}{2}x.{{e}^{2x}} \right|_{0}^{100}-\left. \frac{1}{4}{{e}^{2x}} \right|_{0}^{100}\)\(=\frac{1}{2}.100.{{e}^{200}}-\frac{1}{4}{{e}^{200}}+\frac{1}{4}=\frac{1}{4}\left( 199{{e}^{200}}+1 \right)\)
Cho tích phân $I = \int\limits_1^m {\dfrac{{\ln x}}{{{x^2}}}{\rm{d}}x} = \dfrac{1}{2} - \dfrac{1}{2}\ln 2.$ Giá trị của $m$ thuộc khoảng
Đặt $\left\{ \begin{array}{l}u = \ln x\\{\rm{d}}v = \dfrac{{{\rm{d}}x}}{{{x^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = \dfrac{{{\rm{d}}x}}{x}\\v = - \dfrac{1}{x}\end{array} \right.,$ khi đó $I = \left. { - \dfrac{{\ln x}}{x}} \right|_1^m + \int\limits_1^m {\dfrac{{{\rm{d}}x}}{{{x^2}}}} = - \dfrac{{\ln m}}{m} - \left. {\dfrac{1}{x}} \right|_1^m = - \dfrac{{\ln m}}{m} - \dfrac{1}{m} + 1$
Mặt khác $I = \dfrac{1}{2} - \dfrac{1}{2}\ln 2\,\, \Rightarrow \,\,\dfrac{1}{2} - \dfrac{1}{2}\ln 2 = - \dfrac{{\ln m}}{m} - \dfrac{1}{m} + 1 \Rightarrow m = 2 \in \left( {\dfrac{3}{2};\dfrac{5}{2}} \right).$