Tích phân (phương pháp từng phần)

  •   
Câu 1 Trắc nghiệm

Cho tích phân I=baf(x).g(x)dx, nếu đặt {u=f(x)dv=g(x)dx thì 

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt {u=f(x)dv=g(x)dx{du=f(x)dxv=g(x), khi đó I=f(x).g(x)|babaf(x).g(x)dx.

Câu 2 Trắc nghiệm

Để tính I=π20x2cosxdx theo phương pháp tích phân từng phần, ta đặt

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt {u=x2dv=cosxdx{du=2xdxv=sinx, khi đó I=x2sinx|π202π20xsinxdx.

Câu 3 Trắc nghiệm

Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn điều kiện 10g(x).f(x)dx=1,10g(x).f(x)dx=2. Tính tích phân I=10[f(x).g(x)]dx.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt {u=g(x)dv=f(x)dx{du=g(x)dxv=f(x).

Khi đó 10g(x).f(x)dx=[g(x).f(x)]|1010g(x).f(x)dx[g(x).f(x)]|10=3.

Mặt khác I=10[f(x).g(x)]dx=[f(x).g(x)]|10I=3.

Câu 4 Trắc nghiệm

Biết e+12ln(x1)(x1)2dx=a+be1 với a,bZ. Chọn khẳng định đúng trong các khẳng định sau:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt  {ln(x1)=u1(x1)2dx=dv{1x1dx=du1x1=v

 Ta có e+12ln(x1)(x1)2dx=ln(x1).(1x1)|e+12+e+121(x1)2dx

                               =1e1x1|e+12=1e1e+1=12.e1

Suy ra a=1;b=2a+b=1.

Câu 5 Trắc nghiệm

Cho 10(1+3x)f(x)dx=2019; 4f(1)f(0)=2020. Tính 130f(3x)dx.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét 10(1+3x)f(x)dx=2019

Đặt {1+3x=uf(x)dx=dv{3dx=duf(x)=v

Suy ra 10(1+3x)f(x)dx=(1+3x)f(x)|10310f(x)dx

=4f(1)f(0)310f(x)dx=2020310f(x)dx=2019

10f(x)dx=13

Xét 130f(3x)dx, đặt 3x=t3dx=dtdx=dt3.

Đổi cận : {x=0t=0x=13t=1.

Suy ra 130f(3x)dx=1310f(t)dt=13.10f(x)dx=13.13=19

Câu 6 Trắc nghiệm

Cho y=f(x) là một hàm số bất kỳ có đạo hàm trên R, đặt I=10xf(x)dx. Khẳng đinh nào dưới đây đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: I=10xf(x)dx

Đặt {u=xdv=f(x)dx {du=dxv=f(x)

I=[xf(x)]|1010f(x)dx =f(1)+01f(x)dx.

Câu 7 Trắc nghiệm

Biết rằng a1lnxdx=1+2a(a>1). Khẳng định nào dưới đây là khẳng định đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt {u=lnxdv=dx{du=dxxv=x

a1lnxdx=xlnx|a1a1dx=(xlnxx)|a1=alnaa1ln1+1=1a+alna1a+alna=1+2a3a=alnalna=3a=e320,1(18;21)

Câu 8 Trắc nghiệm

Cho hàm số y=f(x) thỏa mãn f(2)=1620f(x)dx=4. Tính 10x.f(2x)dx.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đặt t=2xdt=2dx.

Đổi cận: {x=0t=0x=1t=2, khi đó ta có: 10x.f(2x)dx=1420tf(t)dt.

Đặt {u=tdv=f(t)dt{du=dtv=f(t).

20tf(t)dt=tf(t)|2020f(t)dt=2f(2)20f(x)dx=2.164=28

Vậy 10x.f(2x)dx=14.28=7.

Câu 9 Trắc nghiệm

Cho f(x) là một hàm số có đạo hàm liên tục trên R và thỏa mãn f(1)=110f(t)dt=13. Giá trị của tích phân I=π20sin2x.f(sinx)dx bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: I=π20sin2x.f(sinx)dx=2π20sinxcosx.f(sinx)dx.

Đặt t=sinxdu=cosxdx.

Đổi cận: {x=0t=0x=π2t=1, khi đó ta có I=210tf(t)dt.

Đặt {u=tdv=f(t)dt{du=dtv=f(t).

I=2(tf(t)|1010f(t)dt)I=2(f(1)10f(t)dt)I=2(113)=43

Câu 10 Trắc nghiệm

Cho hàm số y=f(x) biết f(0)=12f(x)=xex2 với mọi xR. Khi đó 10xf(x)dx bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt {u=f(x)dv=xdx{du=f(x)dxv=x212.

10xf(x)dx=x212f(x)|1010x212f(x)dx=12f(0)1210(x21).xex2dx=12.1212I=1412I

Đặt t=x2dt=2xdx.

Đổi cận: {x=0t=0x=1t=1.

Khi đó ta có:

I=1210(t1)etdt=12(10tetdt10etdt)=12(t.et|1010etdt10etdt)=12(e2et|10)=12(e2e+2)=2e2

Vậy \int\limits_0^1 {xf\left( x \right)dx}  = \dfrac{1}{4} - \dfrac{1}{2}I = \dfrac{1}{4} - \dfrac{{2 - e}}{4} = \dfrac{{e - 1}}{4}.

Câu 11 Trắc nghiệm

Cho \int\limits_1^2 {\left( {x + \dfrac{2}{x}} \right)\ln xdx}  = \dfrac{a}{4} + b\ln 2 + c{\ln ^2}2 với a,\,\,b,\,\,c \in \mathbb{Z}. Giá trị của a + b + c bằng

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: \int\limits_1^2 {\left( {x + \dfrac{2}{x}} \right)\ln xdx}  = \int\limits_1^2 {x\ln xdx}  + 2\int\limits_1^2 {\dfrac{{\ln xdx}}{x}}  = {I_1} + 2{I_2}.

Xét {I_1} = \int\limits_1^2 {x\ln xdx} .

Đặt \left\{ \begin{array}{l}u = \ln x\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = \dfrac{{{x^2}}}{2}\end{array} \right.

\begin{array}{l} \Rightarrow {I_1} = \left. {\dfrac{{{x^2}}}{2}\ln x} \right|_1^2 - \int\limits_1^2 {\dfrac{{{x^2}}}{2}.\dfrac{1}{x}dx} \\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}\int\limits_1^2 {xdx} \\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}.\left. {\dfrac{{{x^2}}}{2}} \right|_1^2\\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{1}{2}.\left( {2 - \dfrac{1}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\, = 2\ln 2 - \dfrac{3}{4}\end{array}

Xét {I_2} = \int\limits_1^2 {\dfrac{{\ln xdx}}{x}} .

Đặt t = \ln x \Rightarrow dt = \dfrac{{dx}}{x}.

Đổi cận: \left\{ \begin{array}{l}x = 1 \Rightarrow t = \ln 1 = 0\\x = 2 \Rightarrow t = \ln 2\end{array} \right..

\Rightarrow {I_2} = \int\limits_0^{\ln 2} {tdt}  = \left. {\dfrac{{{t^2}}}{2}} \right|_0^{\ln 2} = \dfrac{{{{\ln }^2}2}}{2}.

\Rightarrow I = {I_1} + 2{I_2} = 2\ln 2 - \dfrac{3}{4} + {\ln ^2}2 =  - \dfrac{3}{4} + 2\ln 2 + {\ln ^2}2.

\Rightarrow a =  - 3,\,\,b = 2,\,\,c = 1.

Vậy a + b + c =  - 3 + 2 + 1 = 0.

Câu 12 Trắc nghiệm

Cho f\left( x \right) là hàm số có đạo hàm liên tục trên [0;1] và f\left( 1 \right) =  - \dfrac{1}{{18}}, \int\limits_0^1 {xf'\left( x \right)dx}  = \dfrac{1}{{36}}. Giá trị của \int\limits_0^1 {f\left( x \right)dx} bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét I = \int\limits_0^1 {xf'\left( x \right)dx} .

Đặt \left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right..

\begin{array}{l} \Rightarrow I = \left. {xf\left( x \right)} \right|_0^1 - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow I = f\left( 1 \right) - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \dfrac{1}{{36}} =  - \dfrac{1}{{18}} - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {f\left( x \right)dx}  =  - \dfrac{1}{{18}} - \dfrac{1}{{36}} =  - \dfrac{1}{{12}}.\end{array}

Câu 13 Trắc nghiệm

Cho hàm số y = f\left( x \right) có đạo hàm liên tục trên [0;1], thỏa mãn \int\limits_0^1 {f\left( x \right)dx}  = 3f\left( 1 \right) = 4. Tích phân \int\limits_0^1 {xf'\left( x \right)dx} có giá trị là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đặt \left\{ \begin{array}{l}u = x\\dv = f'\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = f\left( x \right)\end{array} \right..

\begin{array}{l} \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx}  = \left. {xf\left( x \right)} \right|_0^1 - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx}  = f\left( 1 \right) - \int\limits_0^1 {f\left( x \right)dx} \\ \Rightarrow \int\limits_0^1 {xf'\left( x \right)dx}  = 4 - 3 = 1.\end{array}

Câu 15 Trắc nghiệm

Cho \dfrac{\pi }{m} - \int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x}  = 1. Khi đó giá trị 9{m^2} - 6 bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đặt \left\{ \begin{array}{l}u = x\\{\rm{d}}v = \cos x\,{\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = {\rm{d}}x\\v = \sin x\end{array} \right., khi đó \int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x}  = \left. {x.\sin x} \right|_0^{\dfrac{\pi }{2}} - \int\limits_0^{\dfrac{\pi }{2}} {\sin x\,{\rm{d}}x}

= \dfrac{\pi }{2} + \left. {\cos x} \right|_0^{\dfrac{\pi }{2}} = \dfrac{\pi }{2} + \cos \dfrac{\pi }{2} - \cos 0 = \dfrac{\pi }{2} - 1.

Suy ra \dfrac{\pi }{m} - \int\limits_0^{\dfrac{\pi }{2}} {x\cos x\,{\rm{d}}x}  = \dfrac{\pi }{m} - \dfrac{\pi }{2} + 1 = 1 \Rightarrow m = 2.

Do đó 9{m^2} - 6 = {9.2^2} - 6 = 30.

Câu 16 Trắc nghiệm

Cho hàm số y = f\left( x \right) thỏa mãn điều kiện \int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x}  = 1f\left( 1 \right) - 2f\left( 0 \right) = 2.

Tính tích phân I = \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x} .

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đặt \left\{ \begin{array}{l}u = \dfrac{1}{{x + 1}}\\{\rm{d}}v = f'\left( x \right){\rm{d}}x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u =  - \dfrac{{{\rm{d}}x}}{{{{\left( {x + 1} \right)}^2}}}\\v = f\left( x \right)\end{array} \right., khi đó \int\limits_0^1 {\dfrac{{f'\left( x \right)}}{{x + 1}}{\rm{d}}x}  = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + \int\limits_0^1 {\dfrac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}{\rm{d}}x}

Suy ra 1 = \left. {\dfrac{{f\left( x \right)}}{{x + 1}}} \right|_0^1 + I \Leftrightarrow I = 1 - \left[ {\dfrac{{f\left( 1 \right)}}{2} - f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}\left[ {f\left( 1 \right) - 2f\left( 0 \right)} \right] = 1 - \dfrac{1}{2}.2 = 0.

Câu 17 Trắc nghiệm

Tích phân \int\limits_{0}^{\pi }{\left( 3x+2 \right){{\cos }^{2}}xdx} bằng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\int\limits_{0}^{\pi }{\left( 3x+2 \right){{\cos }^{2}}xdx}=\frac{1}{2}\int\limits_{0}^{\pi }{\left( 3x+2 \right)\left( 1+\cos 2x \right)dx}=\frac{1}{2}\left[ \int\limits_{0}^{\pi }{\left( 3x+2 \right)dx}+\int\limits_{0}^{\pi }{\left( 3x+2 \right)\cos 2xdx} \right]=\frac{1}{2}\left( {{I}_{1}}+{{I}_{2}} \right)

Tính {{I}_{1}}?

{{I}_{1}}=\int\limits_{0}^{\pi }{\left( 3x+2 \right)dx}=\left. \left( \frac{3{{x}^{2}}}{2}+2x \right) \right|_{0}^{\pi }=\frac{3}{2}{{\pi }^{2}}+2\pi

Tính {{I}_{2}}?

{{I}_{2}}=\int\limits_{0}^{\pi }{\left( 3x+2 \right)\cos 2xdx}

Đặt \left\{ \begin{array}{l}u = 3x + 2\\dv = \cos 2xdx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 3dx\\v = \frac{1}{2}\sin 2x\end{array} \right.

\begin{array}{l} \Rightarrow {I_2} = \left. {\frac{1}{2}\left( {3x + 2} \right)\sin 2x} \right|_0^\pi  - \frac{3}{2}\int\limits_0^\pi  {\sin 2xdx} \\ = \left. {\frac{1}{2}\left( {3x + 2} \right)\sin 2x} \right|_0^\pi  + \frac{3}{4}\left. {\cos 2x} \right|_0^\pi \\ = \frac{3}{4}\left( {1 - 1} \right) = 0\end{array} 

Vậy I=\frac{1}{2}\left( \frac{3}{2}{{\pi }^{2}}+2\pi  \right)=\frac{3}{4}{{\pi }^{2}}+\pi

Câu 18 Trắc nghiệm

Biết \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{{x^2}dx}}{{{{(x\sin x + \cos x)}^2}}} =  - \dfrac{{a\pi }}{{b + c\pi \sqrt 3 }} + d\sqrt 3 } , với a,b,c,d \in {Z^ + }. Tính P = a + b + c + d.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\begin{array}{l}\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{{x^2}dx}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}}  = \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}\dfrac{{x\cos xdx}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}}  = \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}\dfrac{{d\left( {x\sin x + \cos x} \right)}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} \\ =  - \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{x}{{\cos x}}d\left( {\dfrac{1}{{x\sin x + \cos x}}} \right)}  =  - \left. {\dfrac{x}{{\cos x}}.\dfrac{1}{{x\sin x + \cos x}}} \right|_0^{\dfrac{\pi }{3}} + \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{1}{{x\sin x + \cos x}}d\left( {\dfrac{x}{{\cos x}}} \right)} \\ =  - \left. {\dfrac{x}{{\cos x\left( {x\sin x + \cos x} \right)}}} \right|_0^{\dfrac{\pi }{3}} + \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{1}{{{{\cos }^2}x}}dx} \\ =  - \left. {\dfrac{x}{{\cos x\left( {x\sin x + \cos x} \right)}}} \right|_0^{\dfrac{\pi }{3}} + \left. {\tan x} \right|_0^{\dfrac{\pi }{3}} =  - \dfrac{{\dfrac{\pi }{3}}}{{\dfrac{1}{2}\left( {\dfrac{\pi }{3}.\dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2}} \right)}} + \sqrt 3  = \dfrac{{ - 4\pi }}{{\pi \sqrt 3  + 3}} + \sqrt 3 \\ =  - \dfrac{{a\pi }}{{b + c\sqrt 3 }} + d\sqrt 3 \,\,\left( {a,b,c,d \in {Z^ + }} \right) \Rightarrow a = 4,b = 3,c = 1,d = 1 \Rightarrow a + b + c + d = 9\end{array}

Câu 19 Trắc nghiệm

Tích phân \int\limits_{0}^{100}{x.{{e}^{2x}}dx} bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

 Ta đặt \left\{ \begin{array}{l}u = x\\{e^{2x}}dx = dv\end{array} \right. \Rightarrow \left\{ \begin{array}{l}dx = du\\v = \frac{1}{2}{e^{2x}}\end{array} \right.

Khi đó \int\limits_{0}^{100}{x.{{e}^{2x}}dx}=\left. \frac{1}{2}x.{{e}^{2x}} \right|_{0}^{100}-\frac{1}{2}\int\limits_{0}^{100}{{{e}^{2x}}dx}=\left. \frac{1}{2}x.{{e}^{2x}} \right|_{0}^{100}-\left. \frac{1}{4}{{e}^{2x}} \right|_{0}^{100}=\frac{1}{2}.100.{{e}^{200}}-\frac{1}{4}{{e}^{200}}+\frac{1}{4}=\frac{1}{4}\left( 199{{e}^{200}}+1 \right)

Câu 20 Trắc nghiệm

Cho tích phân I = \int\limits_1^m {\dfrac{{\ln x}}{{{x^2}}}{\rm{d}}x}  = \dfrac{1}{2} - \dfrac{1}{2}\ln 2. Giá trị của m thuộc khoảng

 
Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Đặt \left\{ \begin{array}{l}u = \ln x\\{\rm{d}}v = \dfrac{{{\rm{d}}x}}{{{x^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\rm{d}}u = \dfrac{{{\rm{d}}x}}{x}\\v =  - \dfrac{1}{x}\end{array} \right., khi đó I = \left. { - \dfrac{{\ln x}}{x}} \right|_1^m + \int\limits_1^m {\dfrac{{{\rm{d}}x}}{{{x^2}}}}  =  - \dfrac{{\ln m}}{m} - \left. {\dfrac{1}{x}} \right|_1^m =  - \dfrac{{\ln m}}{m} - \dfrac{1}{m} + 1

Mặt khác I = \dfrac{1}{2} - \dfrac{1}{2}\ln 2\,\, \Rightarrow \,\,\dfrac{1}{2} - \dfrac{1}{2}\ln 2 =  - \dfrac{{\ln m}}{m} - \dfrac{1}{m} + 1 \Rightarrow m = 2 \in \left( {\dfrac{3}{2};\dfrac{5}{2}} \right).