Câu hỏi:
2 năm trước

Cho \(f\left( x \right)\) là một hàm số có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( 1 \right) = 1\) và \(\int\limits_0^1 {f\left( t \right){\rm{dt}}}  = \dfrac{1}{3}.\) Giá trị của tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right){\rm{d}}x} \) bằng:

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right){\rm{d}}x}  = 2\int\limits_0^{\frac{\pi }{2}} {\sin x\cos x.f'\left( {\sin x} \right){\rm{d}}x} \).

Đặt \(t = \sin x \Rightarrow du = \cos xdx\).

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\), khi đó ta có \(I = 2\int\limits_0^1 {tf'\left( t \right)dt} \).

Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).

\(\begin{array}{l} \Rightarrow I = 2\left( {\left. {tf\left( t \right)} \right|_0^1 - \int\limits_0^1 {f\left( t \right)dt} } \right)\\ \Leftrightarrow I = 2\left( {f\left( 1 \right) - \int\limits_0^1 {f\left( t \right)dt} } \right)\\ \Leftrightarrow I = 2\left( {1 - \dfrac{1}{3}} \right) = \dfrac{4}{3}\end{array}\)

Hướng dẫn giải:

- Đổi biến số, đặt \(t = \sin x\).

- Sử dụng phương pháp tích phân từng phần: \(\int\limits_a^b {udv}  = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Câu hỏi khác