Cực trị của hàm số

  •   
Câu 1 Trắc nghiệm

Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu f(x) đổi dấu từ âm sang dương qua điểm x0 thuộc (a;b) thì

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu f(x) đổi dấu từ âm sang dương qua điểm x0 thì x0 là điểm cực tiểu của hàm số.

Câu 2 Trắc nghiệm

Giả sử y=f(x) có đạo hàm cấp hai trên (a;b). Nếu {f(x0)=0f(x0)>0 thì 

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nếu {f(x0)=0f(x0)>0 thì x0 là một điểm cực tiểu của hàm số.

Câu 3 Trắc nghiệm

Đề mẫu ĐGNL HN 2021

Hàm số y=f(x) có đạo hàm f(x)=x3298x2+94x+38, xR. Gọi S là tập hợp các điểm cực tiểu của hàm số g(x)=f(2x+1)x3. Tổng giá trị các phần tử của S bằng

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Bước 1:

Ta có

g(x)=2f(2x+1)3x2=2[(2x+1)3298(2x+1)2+94(2x+1)+38]3x2=2(8x3+12x2+6x+1298(4x2+4x+1)+94(2x+1)+38)3x2=16x3+24x2+12x+229x229x294+9x+92+343x2=16x38x28x

g(x)=48x216x8.

Bước 2:

Xét hệ phương trình {g(x)=0g(x)>0{16x38x28x=048x216x8>0(luondung) [x=0x=1x=12.

S={0;1;12}. Vậy tổng các phần tử của S0+1+(12)=12.

Câu 4 Trắc nghiệm

Đề chính thức ĐGNL HCM 2019

Điểm cực tiểu của hàm số (1) y=x+4x

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: y=14x2

y=0x=±2

Bảng biến thiên:

Từ bảng biến thiên ta thấy điểm cực tiểu của đồ thị hàm số là x=2

Câu 5 Trắc nghiệm

Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu f(x) đổi dấu từ dương sang âm qua điểm x0 thì:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nếu f(x) đổi dấu từ dương sang âm qua điểm x0 thì x0 là điểm cực đại của hàm số.

Câu 6 Trắc nghiệm

Cho hàm số  y=f(x) xác định và có đạo hàm cấp một và cấp hai trên khoảng  (a,b) và  x0(a,b). Khẳng định nào sau đây là sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Câu C đúng theo điều kiện cần của cực trị.

Câu A, B đúng theo điều kiện đủ của cực trị.

Câu D sai theo điều kiện đủ cho cực trị tồn tại.

Câu 7 Trắc nghiệm

Nếu x0 là điểm cực đại của hàm số thì f(x0) là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu x0 là điểm cực đại của hàm số thì f(x0) là giá trị cực đại của hàm số.

Câu 8 Trắc nghiệm

Nếu (x0;f(x0)) là điểm cực đại của đồ thị hàm số thì x0 là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Nếu (x0;f(x0)) là điểm cực đại của đồ thị hàm số thì x0 là điểm cực đại của hàm số

Câu 9 Trắc nghiệm

Phát biểu nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phát biểu “Hàm số y=f(x) đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm” là sai vì tồn tại hàm số có cực trị tại điểm x0 không phải là nghiệm của đạo hàm (chẳng hạn hàm y=|x| đạt cực trị tại x=0 mà không có đạo hàm tại điểm đó)

Phát biểu “Nếu f(x0)=0f(x0)>0 thì hàm số đạt cực đại tại x0” là sai vì nếu f(x0)=0f(x0)>0 thì hàm số đạt cực tiểu tại x0

Phát biểu “Nếu f(x0)=0f(x0)=0 thì x0 không phải là cực trị của hàm số y=f(x) đã cho” là sai vì tồn tại hàm số, chẳng hạn y=x4f(0)=0f(0)=0x=0 là cực trị của hàm số đó.

Phát biểu “Nếu f(x) đổi dấu khi x qua điểm x0f(x) liên tục tại x0 thì hàm số y=f(x) đạt cực trị tại điểm x0.” là đúng.

Câu 10 Trắc nghiệm

Nếu x0 là điểm cực tiểu của hàm số thì f(x0) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nếu x0 là điểm cực tiểu của hàm số thì f(x0) là giá trị cực tiểu của hàm số.

Câu 11 Trắc nghiệm

Nếu hàm số bậc ba có phương trình y=0 có nghiệm kép hoặc vô nghiệm thì hàm số bậc ba đó

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Nếu hàm số bậc ba có phương trình y=0 có nghiệm kép hoặc vô nghiệm thì hàm số bậc ba đó không có cực trị.

Câu 12 Trắc nghiệm

Chọn phát biểu đúng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Hàm số bậc ba chỉ có thể có 2 cực trị và không có cực trị nào nên nếu nó có cực đại thì chắc chắn sẽ có cực tiểu.

Không phải lúc nào hàm bậc ba cũng có cực trị, vẫn có trường hợp không có cực trị và ngược lại nên A, D sai.

Câu 13 Trắc nghiệm

Hàm số y=x4+2x32017 có bao nhiêu điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

y=4x3+6x2=02x2(2x+3)=0[x=32x=0

Do x=32 là nghiệm bội lẻ nên nó là một cực trị của hàm số.

x=0 là nghiệm bội chẵn nên x=0 không là điểm cực trị của hàm số.

Vậy hàm số đã cho có 1 cực trị.

Câu 14 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 103

Cho hàm số y=f(x) có bảng xét dấu của đạo hàm như sau:

Số điểm cực trị của hàm số đã cho là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Dựa vào bảng xét dấu ta thấy đạo hàm đổi dấu khi đi qua các điểm có hoành độ là -3, -1, 1, 2 nên hàm số đã cho có 4 điểm cực trị.

Câu 15 Trắc nghiệm

Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y=x33x2+2

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Cách 1:

Ta có y=3x26x

Khi đó x33x2+2 =(3x26x)(13x13)2x+2

Vậy đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là y=2x+2

Cách 2:

y=3x26xy=0[x=0x=2

A(0;2),B(2;2) là 2 điểm cực trị của đồ thị hàm số, phương trình đường thẳng AB là

x020=y222y=2x+2

Cách 3: 

Bước 1: y=3x26x;y=6x6

Bước 2: Mode 2

Bước 3: 

a=2, b=-2

Vậy đường thẳng cần tìm là: y=2x+2

Câu 16 Trắc nghiệm

Cho các hàm số (I):y=x2+3; (II):y=x3+3x2+3x5; (III):y=x1x+2; (IV):y=(2x+1)7.  Các hàm số không có cực trị là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét hàm số  y=x2+3. Ta có y=2xy=0x=0.

Khi đó  y(0)=2>0 nên hàm số y=x2+3 có cực tiểu.

Do đó ta loại các đáp án A,B,C. Đáp án đúng là D.

Câu 17 Trắc nghiệm

Cho hàm số y=x+sin2x+2017.Tìm tất cả các điểm cực tiểu của hàm số.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tập xác định xR.

Ta có y=1+2cos2xy(x0)=01+2cos2x0=0cos2x0=12=cos2π3x0=±π3+kπ(kZ).

Ta tính được y=4sin2x.

Do đó:Với x0=π3+kπ thì y(x0)=4sin[2(π3+kπ)]=4sin2π3<0 vì vậy x0=π3+kπ(kZ) là điểm cực đại của hàm đã cho.

Với x0=π3+kπ thì y(x0)=4sin[2(π3+kπ)]=4sin(2π3)>0 vì vậy x0=π3+kπ(kZ) là điểm cực tiểu của hàm đã cho.

Câu 18 Trắc nghiệm

Hàm số  y=2x4+4x2+5 có bao nhiêu điểm cực trị?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

 y=2x4+4x2+5y=8x3+8xy=0[x=0x=1x=1

y=0 có 3 nghiệm phân biệt.

Vậy hàm số y=2x4+4x2+5 có 3 điểm cực trị.

Câu 19 Trắc nghiệm

Số điểm cực trị của hàm số y=(x1)2017

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tập xác định: D=R

y=(x1)2017y=2017(x1)20160,x

Do đó hàm số đồng biến trên R nên không có cực trị.

Câu 20 Trắc nghiệm

Cho hàm số y=x42x2+2. Diện tích S của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị hàm số đã cho có giá trị là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

y=x42x2+2(C)y=4x34xy=0[x=0x=±1

Tọa độ các điểm cực trị của (C) là: A(0;2),B(1;1),C(1;1).

Diện tích tam giác ABC:  SABC=12AH.BC=12.(21).(1(1))=1