Tam giác cân

Câu 21 Trắc nghiệm

Cho tam giác $ABC$  cân tại $A.$  Phát biểu nào trong các phát biểu sau là sai:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Do tam giác ABC cân nên \(\widehat B = \widehat C\)

Xét tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = {180^0} \Leftrightarrow \widehat B + \widehat C = {180^0} - \widehat A \Leftrightarrow \widehat C = \dfrac{{{{180}^0} - \widehat A}}{2}\) hay \(\widehat A = {180^0} - 2\widehat C\)

Câu 22 Trắc nghiệm

Một tam giác cân có góc ở đỉnh bằng \({64^0}\) thì số đo góc ở đáy là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Sử dụng cách tính số đo các góc trong tam giác $ABC$ cân tại $A.$

Góc ở đỉnh \(\widehat A = {180^0} - 2\widehat C\) và góc ở đáy \(\widehat C = \dfrac{{{{180}^0} - \widehat A}}{2}.\)

Áp dụng ta có  số đo góc ở đáy bằng: $\dfrac{{{{180}^0} - {{64}^0}}}{2} = {58^0}$

Câu 23 Trắc nghiệm

Một tam giác cân có góc ở đáy bằng \({70^0}\) thì số đo góc ở đỉnh là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Tổng số đo hai góc ở đáy là \(70^o.2 = 140^\circ \)

Vì tổng ba góc của tam giác bằng \(180^\circ \) nên số đo góc ở đỉnh tam giác cân này là

\(180^\circ  - 140^\circ  = 40^\circ .\)

Câu 24 Trắc nghiệm

Số tam giác cân trong hình vẽ dưới đây là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Từ hình vẽ ta có \(AB = AE;BC = DE\)

Vì \(AB = AE \Rightarrow \Delta ABE\) cân tại \(A.\)

Suy ra \(\widehat B = \widehat E\)  (hai góc ở đáy)

Xét tam giác \(ABC\) và \(AED\) có: \(AB = AE;\widehat B = \widehat E\left( {cmt} \right);BC = DE\) nên \(\Delta ABC = \Delta AED\left( {c - g - c} \right)\)

Do đó \(AC = AD\) (hai cạnh tương ứng) suy ra \(\Delta ACD\) cân tại \(A.\)

Vậy có hai tam giác cân trên hình vẽ.

Câu 25 Trắc nghiệm

Tính số đo \(x\) trên hình vẽ sau:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Tam giác \(ABC\) cân tại \(A\) (vì \(AB = AC\) ) có \(\widehat A = 40^\circ \) nên \(\widehat B = \widehat {ACB} = \dfrac{{180^\circ  - 40^\circ }}{2} = 70^\circ \)

Mà \(\widehat {ACB}\) là góc ngoài của tam giác \(ACD\) nên \(\widehat {ACB} = \widehat {CAD} + \widehat {CDA}\)

Lại có \(\Delta CAD\) cân tại \(C \Rightarrow \widehat {CAD} = \widehat {CDA} = x\) (tính chất)

Nên  \(\widehat {ACB} = \widehat {CAD} + \widehat {CDA} = 2x \Rightarrow x = \dfrac{{\widehat {ACB}}}{2}\)\( = \dfrac{{70^\circ }}{2} = 35^\circ .\)

Vậy \(x = 35^\circ .\)

Câu 26 Trắc nghiệm

Cho tam giác $ABC$ vuông cân ở $A.$  Trên đáy $BC$  lấy hai điểm $M,N$ sao cho $BM = CN = AB.$

Tam giác \(AMN\) là tam giác gì?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Do tam giác $ABC$  vuông cân ở $A$  nên \(\widehat B = \widehat C = {45^0}\).

Xét tam giác $AMB$  có: $BM = BA(gt),$ nên tam giác $AMB$  cân ở $B.$

Do đó $\widehat {AMB} = \dfrac{{{{180}^0} - \widehat B}}{2}$$ = \dfrac{{{{180}^0} - {{45}^0}}}{2} = {67^0}30'$

Chứng minh tương tự ta được tam giác $ANC$  cân ở $C$ và \(\widehat {ANC} = {67^0}30'\).

Xét tam giác $AMN$  có: \(\widehat {AMN} = \widehat {ANM} = {67^0}30'\), do đó tam giác $AMN$ cân ở $A.$

Câu 27 Trắc nghiệm

Cho tam giác $ABC$ vuông cân ở $A.$  Trên đáy $BC$  lấy hai điểm $M,N$ sao cho $BM = CN = AB.$

Tính số đo góc \(\widehat {MAN.}\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tam giác $AMN,$ ta có:

\(\widehat {MAN} = {180^0} - \left( {\widehat {AMN} + \widehat {ANM}} \right) \)\(= {180^0} - {135^0} = {45^0}.\)

Vậy \(\widehat {MAN} = {45^0}.\)

Câu 28 Trắc nghiệm

Cho tam giác $ABC$  cân tại đỉnh $A$ với \(\widehat A = {80^0}\). Trên hai cạnh $AB,AC$ lần lượt lấy hai điểm $D$  và $E$  sao cho $AD = AE.$ Phát biểu nào sau đây là sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Do tam giác ABC cân nên \(\widehat B = \dfrac{{{{180}^0} - \widehat A}}{2} = \dfrac{{{{180}^0} - {{80}^0}}}{2} = {50^0}\)

Ta thấy tam giác $ADE$  cân do $AD = AE.$

\( \Rightarrow \widehat {ADE} = \dfrac{{{{180}^0} - \widehat A}}{2} = \dfrac{{{{180}^0} - {{80}^0}}}{2} = {50^0}\)

Do đó \(\widehat B = \widehat {ADE}\) . Mà hai góc này ở vị trí so le trong nên $ED//BC.$

Vậy D là đáp án sai.

Câu 29 Trắc nghiệm

Cho tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\). Khi đó

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Tam giác \(ABC\) có \(\widehat A = 90^\circ ;\,AB = AC\) nên tam giác \(ABC\) vuông cân.

Tam giác vuông cân là tam giác vừa vuông vừa cân nên cả A, B, C đều đúng.

Câu 30 Trắc nghiệm

Cho tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM = \dfrac{{BC}}{2}\). Số đo góc \(BAC\) là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Từ giả thiết suy ra \(AM = BM = CM\)

Ta có \(\widehat {BAC} + \widehat B + \widehat C = 180^\circ \) (định lý tổng ba góc trong tam giác) (1)

Lại có \(\Delta AMB\) cân tại \(M\,\left( {{\rm{do}}\,\,MA = MB} \right)\) nên \(\widehat B = \widehat {BAM}\) (tính chất) (2)

Tương tự \(\Delta AMC\) cân tại \(M\,\left( {{\mathop{\rm do}\nolimits} \,\,MA = MC} \right)\) nên \(\widehat C = \widehat {MAC}\) (tính chất) (3)

Từ (1); (2); (3) ta có \(\widehat {BAC} + \widehat {BAM} + \widehat {CAM} = 180^\circ \) \( \Rightarrow \widehat {BAC} + \widehat {BAC} = 180^\circ \) \(2.\widehat {BAC} = 180^\circ \) \( \Rightarrow \widehat {BAC} = 90^\circ .\)

Câu 31 Trắc nghiệm

Tam giác \(ABC\) có \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ .\) Trên tia đối của tia \(AC\) lấy điểm \(E\) sao cho \(AE = AB.\) Tính số đo góc \(CBE.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác \(ABC\) có \(\widehat A + \widehat B + \widehat C = 180^\circ \)  (định lý tổng ba góc trong tam giác) và \(\widehat A = 40^\circ ;\,\widehat B - \widehat C = 20^\circ \,\left( {gt} \right)\)

Suy ra \(\widehat B + \widehat C = 140^\circ \) nên \(\widehat B = \dfrac{{140^\circ  + 20^\circ }}{2} = 80^\circ ;\,\widehat C = 60^\circ \)

Xét tam giác \(AEB\) cân tại \(A\) (do \(AB = AE\,\left( {gt} \right)\)) nên \(\widehat {AEB} = \widehat {ABE}\)  (tính chất) (1)

Lại có \(\widehat {BAC}\) là góc ngoài của tam giác \(AEB \Rightarrow \widehat {BAC} = \widehat {AEB} + \widehat {ABE}\)  (2)

Từ (1) và (2) suy ra \(\widehat {ABE} = \dfrac{{\widehat {BAC}}}{2} = 20^\circ \)

Do đó \(\widehat {CBE} = \widehat {CBA} + \widehat {ABE} = 80^\circ  + 20^\circ  = 100^\circ .\)

Câu 32 Trắc nghiệm

Cho tam giác \(ABC\) có \(\widehat A = 120^\circ .\) Trên tia phân giác của góc \(A\) lấy điểm \(D\) sao cho \(AD = AB + AC.\) Khi đó tam giác \(BCD\) là tam giác gì?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Lấy \(E \in AD\) sao cho \(AE = AB\) mà \(AD = AB + AC\) nên \(AC = DE.\)

\(\Delta ABE\) cân có \(\widehat {BAD} = 60^\circ \) nên \(\Delta ABE\) là tam giác đều suy ra \(AE = EB.\)

Thấy \(\widehat {BED} = \widehat {EBA} + \widehat {EAB} = 120^\circ \)  (góc ngoài tại đỉnh \(E\) của tam giác \(ABE\) )  nên \(\widehat {BED} = \widehat {BAC}\left( { = 120^\circ } \right)\)

Suy ra \(\Delta EBD = \Delta {\rm A}BC\left( {c.g.c} \right) \Rightarrow \widehat {{B_1}} = \widehat {{B_2}}\) (hai góc tương ứng bằng nhau) và \(BD = BC\) (hai cạnh tương ứng)

Lại có $\widehat {{B_1}} + \widehat {{B_3}} = 60^\circ $ nên \(\widehat {{B_2}} + \widehat {{B_3}} = 60^\circ .\)

\(\Delta BCD\) cân tại \(B\) có \(\widehat {CBD} = 60^\circ \) nên nó là tam giác đều.

Câu 33 Trắc nghiệm

Cho tam giác $ABC$  có \(\widehat A = {60^ \circ }\). Vẽ ra phía ngoài của tam giác hai tam giác đều $AMB$  và $ANC.$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+  Các tam giác $AMB$ và $ANC$  là các tam giác đều(gt) nên \(\widehat {MAB} = {60^0},\,\,\,\widehat {NAC} = {60^0}\).

Ta có: \(\widehat {MAB} + \widehat {BAC} + \widehat {CAN} = {60^0} + {60^0} + {60^0} = {180^0}.\)

Suy ra ba điểm $M,A,N$ thẳng hàng.

+  Ta có:

 $\widehat {MAC} = \widehat {MAB} + \widehat {BAC} = {60^0} + {60^0} = {120^0}\\\widehat {BAN} = \widehat {CAN} + \widehat {BAC} = {60^0} + {60^0} = {120^0}$

Do đó \(\widehat {MAC} = \widehat {BAN}\) .

Xét hai tam giác $ABN$  và $AMC$  có:

+) $AB = AM$ (do tam giác $AMB$ đều)

+) \(\widehat {BAN} = \widehat {MAC}\) (cmt)

+) $AN = AC$ (do tam giác $ANC$ đều)

Do đó \(\Delta ABN = \Delta AMC(c.g.c)\)

Suy ra $BN = CM$ (hai cạnh tương ứng).

Vậy cả A, B đều đúng.

Câu 34 Trắc nghiệm

Cho \(M\) thuộc đoạn thẳng \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB,\) vẽ các tam giác đều \(AMC,BMD.\) Gọi \(E;F\) theo thứ tự là trung điểm của \(AD;BC.\) Tam giác \(MEF\) là tam giác gì? Chọn câu trả lời đúng nhất.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\Delta AMC\) đều nên \(\widehat {AMC} = {60^o};\,AM = CM.\)

\(\Delta BMD\) đều nên \(\widehat {BMD} = {60^o};\,MD = MB.\)

\(\widehat {AMD} = \widehat {AMC} + \widehat {CMD} = {60^o} + \widehat {CMD}\)   (1)

\(\widehat {CMB} = \widehat {BMD} + \widehat {CMD} = {60^o} + \widehat {CMD}\)    (2)

Từ (1) và (2) suy ra: \(\widehat {AMD} = \widehat {CMB}\)

Xét \(\Delta AMD\) và \(\Delta CMB\) có:

\(AM = CM\,\,(cmt)\)

\(\widehat {AMD} = \widehat {CMB}\,\,(cmt)\)

\(MD = MB\,\,(cmt)\)

\( \Rightarrow \Delta AMD = \Delta CMB\,(c.g.c)\)

\( \Rightarrow AD = CB\) (hai cạnh tương ứng).

\( \Rightarrow \widehat {DAM} = \widehat {BCM}\) (hai góc tương ứng).

Xét \(\Delta AEM\) và \(\Delta CFM\) có:

\(AM = CM\,(cmt)\)

\(\widehat {DAM} = \widehat {BCM}\,(cmt)\)

\(AE = CF\,\,\left( {\dfrac{{AD}}{2} = \dfrac{{CB}}{2}} \right)\)

\( \Rightarrow \Delta AEM = \Delta CFM\,(c.g.c)\)

\( \Rightarrow EM = FM\) (hai cạnh tương ứng).

\( \Rightarrow \widehat {AME} = \widehat {CMF}\) (hai góc tương ứng)

\( \Rightarrow \widehat {AMC} + \widehat {CME} = \widehat {CME} + \widehat {EMF}\)

\( \Rightarrow \widehat {AMC} = \widehat {EMF}\)

\( \Rightarrow \widehat {EMF} = {60^o}\)

Xét \(\Delta MEF\) có: \(EM = FM\,(cmt);\,\widehat {EMF} = {60^o}\,(cmt)\) nên \(\Delta MEF\) là tam giác đều.

Tam giác đều vừa là tam giác cân vừa là tam giác nhọn (vì có ba góc nhọn) nên cả A, B, C đều đúng.

Câu 35 Trắc nghiệm

Cho tam giác \(ABC\) vuông tại \(A\) có \(\widehat B = {30^0}.\) Khi đó:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Lấy điểm \(M\) trên cạnh \(BC\) sao cho \(\widehat {BAM} = {30^o}.\)

\(\Delta AMB\) có \(\widehat {BAM} = \widehat B = {30^o}\) nên là tam giác cân, suy ra \(MA = MB\)            (1)

\(\Delta ABC\) vuông tại \(A\) nên \(\widehat B + \widehat C = {90^o}\) \( \Rightarrow \widehat C = {90^o} - \widehat B = {90^o} - {30^o} = {60^o}.\)

Ta có: \(\widehat {BAC} = \widehat {BAM} + \widehat {MAC}\)

\( \Rightarrow \widehat {MAC} = \widehat {BAC} - \widehat {BAM} = {90^o} - {30^o} = {60^o}.\)

\(\Delta AMC\) có: \(\widehat {MAC} = \widehat C = {60^o}\) nên là tam giác đều, suy ra \(AC = AM = MC\)   (2)

Từ (1) và (2) ta có: \(AC = MB = MC\) hay \(AC = \dfrac{{BC}}{2}.\)

Câu 36 Trắc nghiệm

Cho tam giác \(ABC\) cân tại \(A\) có \(\widehat A = {120^0},BC = 6cm.\) Đường vuông góc với \(AB\) tại \(A\) cắt \(BC\) ở \(D.\) Độ dài \(BD\) bằng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\Delta ABC\) cân tại \(\widehat A\) nên \(\widehat B = \widehat C = \dfrac{{{{180}^o} - \widehat A}}{2} = \dfrac{{{{180}^o} - {{120}^o}}}{2} = {30^o}.\)

Ta có: \(\widehat {CAD} = \widehat {BAC} - \widehat {BAD} = {120^o} - {90^o} = {30^o}\)

\(\Delta ADC\) có: \(\widehat C = \widehat {CAD} = {30^o}\) nên \(\Delta ADC\) cân tại \(D\), suy ra \(DC = DA\)      (1)

Ta có: \(\widehat {ADB}\) là góc ngoài tại đỉnh \(D\) của \(\Delta ADC\) nên \(\widehat {ADB} = \widehat C + \widehat {CAD} = {30^o} + {30^o} = {60^o}.\)

Trên cạnh \(BD\) lấy \(E\) sao cho \(\widehat {BAE} = {30^o}\) thì \(E\) nằm giữa \(B\) và \(D.\)

\(\Delta AEB\) có: \(\widehat B = \widehat {BAE} = {30^o}\) nên \(\Delta AEB\) cân tại \(E\), suy ra \(AE = EB\)          (2)

Ta có: \(\widehat {DAE} = \widehat {BAD} - \widehat {BAE} = {90^o} - {30^o} = {60^o}.\)

\(\Delta ADE\) có: \(\widehat {DAE} = \widehat {ADE} = {60^o}\) nên \(\Delta ADE\) là tam giác đều, suy ra \(DA = DE = AE\)    (3)

Từ (1), (2) và (3) suy ra: \(DC = DE = EB = \dfrac{1}{3}BC.\)

Do đó \(BD = DE + EB = \dfrac{2}{3}BC = \dfrac{2}{3}.6 = 4\,\left( {cm} \right).\)

Câu 37 Trắc nghiệm

Cho tam giác \(ABC\) cân tại \(A\) có: \(\widehat A = {100^0}, BC = a, AC = b.\) Về phía ngoài tam giác \(ABC\) vẽ tam giác \(ABD\) cân tại \(D\) có: \(\widehat {ADB} = {140^0}.\) Tính chu vi tam giác \(ABD\) theo \(a\) và \(b.\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(BE = BD.\)

\(\Delta ABC\) cân tại \(A\) nên \(\widehat {ABC} = \dfrac{{{{180}^o} - \widehat {BAC}}}{2} = \dfrac{{{{180}^o} - {{100}^o}}}{2} = {40^o}.\)

\(\Delta ABD\) cân tại \(D\) nên \(\widehat {DBA} = \dfrac{{{{180}^o} - \widehat {ADB}}}{2} = \dfrac{{{{180}^o} - {{140}^o}}}{2} = {20^o}\).

Ta có: \(\widehat {DBE} = \widehat {DBA} + \widehat {ABC} = {20^o} + {40^o} = {60^o}.\)

Xét \(\Delta BDE\) có: \(\widehat {DBE} = {60^o}\) nên \(\Delta BDE\) đều, suy ra \(BD = BE = DE = DA.\)

\(\widehat {EDA} = \widehat {BDA} - \widehat {BDE} = {140^o} - {60^o} = {80^o}\)

\(\Delta DAE\) cân tại \(D\) (vì \(DA = DE\,(cmt)\)) nên \(\widehat {DEA} = \widehat {DAE} = \dfrac{{{{180}^o} - \widehat {EDA}}}{2} = \dfrac{{{{180}^o} - {{80}^o}}}{2} = {50^o}.\)

\(\widehat {EAC} = \widehat {DAB} + \widehat {BAC} - \widehat {DAE} = {20^o} + {100^o} - {50^o} = {70^o}.\)

\(\widehat {AEC} = {180^o} - \widehat {DEA} - \widehat {DEB} = {180^o} - {50^o} - {60^o} = {70^o}.\)

\(\Delta CAE\) có \(\widehat {EAC} = \widehat {AEC} = {70^o}\) nên \(\Delta CAE\) cân tại \(C\), suy ra \(AC = EC.\)

Do đó: \(AD = BD = BE = BC - EC = BC - AC = a - b.\)

            \(AB = AC = b.\)

Vậy chu vi của \(\Delta ABD\) là:

\(AD + BD + AB = a - b + a - b + b = 2a - b.\)

Câu 38 Trắc nghiệm

Cho tam giác \(ABC\) cân tại \(B,\,\widehat {BAC} = {80^0}.\) Lấy \(I\) là điểm nằm trong tam giác sao cho \(\widehat {IAC} = {10^0};\widehat {ICA} = {30^0}.\) Tính góc \(ABI.\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Trên nửa mặt phẳng bờ \(AC\) chứa điểm \(B\) lấy điểm \(M\) sao cho \(\Delta ACM\) đều.

Xét \(\Delta AMB\) và \(\Delta CMB\) có:

\(BM\) cạnh chung

\(AM = CM\) (vì \(\Delta ACM\) đều)

\(AB = CB\) (vì \(\Delta ABC\) cân tại \(B\))

\( \Rightarrow \Delta AMB = \Delta CMB\,(c.c.c)\)

\( \Rightarrow \widehat {AMB} = \widehat {CMB}\) (hai góc tương ứng)       (1)

Mà \(\widehat {AMB} + \widehat {CMB} = \widehat {ABC} = {60^o}\) (vì \(\Delta ACM\) đều)     (2)

Từ (1) và (2) suy ra: \(\widehat {AMB} = \widehat {CMB} = \dfrac{{{{60}^o}}}{2} = {30^o}\)

\(\Delta ABC\) cân tại \(B\) nên \(\widehat {BAC} = \widehat {BCA} = \dfrac{{{{180}^o} - \widehat {ABC}}}{2} = \dfrac{{{{180}^o} - {{80}^o}}}{2} = {50^o}\).

Ta có: \(\widehat {CAB} + \widehat {BAM} = \widehat {CAM} = {60^o}\) (vì \(\Delta ACM\) đều)

\( \Rightarrow \widehat {BAM} = {60^o} - \widehat {CAB} = {60^o} - {50^o} = {10^o}\)

Xét \(\Delta AMB\) và \(\Delta ACI\) có:

\(AM = AC\) (vì \(\Delta ACM\) đều)

\(\widehat {BAM} = \widehat {IAC} = {10^o}\)

\(\widehat {AMB} = \widehat {ACI} = {30^o}\)

\( \Rightarrow \Delta AMB = \Delta ACI\,(g.c.g)\)

\( \Rightarrow AB = AI\) (hai cạnh tương ứng)

Do đó \(\Delta ABI\) cân tại \(A\).

Ta có: \(\widehat {BAI} = \widehat {BAC} - \widehat {IAC} = {50^o} - {10^o} = {40^o}\)

\(\Delta ABI\) cân tại \(A\) nên \(\widehat {ABI} = \dfrac{{{{180}^o} - \widehat {BAI}}}{2} = \dfrac{{{{180}^o} - {{40}^o}}}{2} = {70^o}.\)