Các bài toán về mặt phẳng và đường thẳng

Câu 81 Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$ cho tứ diện $ABCD$ có các đỉnh $A(1;2;1),B( - 2;1;3),C(2; - 1;1),D(0;3;1)$. Phương trình mặt phẳng $(P)$ đi qua hai điểm $A,B$ sao cho $C,D$ cùng phía so với $(P)$ và khoảng cách từ $C$ đến $(P)$ bằng khoảng cách từ $D$ đến $(P)$ là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì $C,D$ cùng phía so với $(P)$ và khoảng cách từ $C$ đến $(P)$ bằng khoảng cách từ $D$ đến $(P)$ nên ta có $(P)//CD$

Ta có

\(\overrightarrow {AB}  = ( - 3; - 1;2);\overrightarrow {CD}  = ( - 2;4;0) \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right] = ( - 8; - 4; - 14)\)

Vì $(P)//CD$ và $(P)$ đi qua hai điểm $A,B$ nên ta có \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]\). Chọn $\overrightarrow {{n_P}}  = (4;2;7)$

$ \Rightarrow (P):\left\{ \begin{array}{l}\overrightarrow {{n_P}}  = (4;2;7)\\A(1;2;1) \in (P)\end{array} \right. \Rightarrow (P):4(x - 1) + 2(y - 2) + 7(z - 1) = 0 $

$\Leftrightarrow 4x + 2y + 7z - 15 = 0$

Câu 82 Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}}  = \left( {1;2;0} \right)\).

Gọi \(d\) là đường thẳng cần tìm. Ta có \(d \cap Ox = B\left( {b;0;0} \right)\).

Suy ra \(d\) có VTCP \(\overrightarrow {AB}  = \left( {b + 1; - 3;4} \right)\).

Do \(d\parallel \left( P \right)\) nên \(\overrightarrow {AB}  \bot \overrightarrow {{n_P}}  \Rightarrow \left( {b + 1} \right).1 + \left( { - 3} \right).2 + 4.0 = 0 \Leftrightarrow b = 5 \Rightarrow B\left( {5;0;0} \right).\)

Đường thẳng cần tìm đi qua hai điểm \(A,{\rm{ }}B\) nên có phương trình \(\left\{ \begin{array}{l}x = 5 + 6t\\y =  - 3t\\z = 4t\end{array} \right.\).

Câu 83 Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 2;4} \right);\,\,B\left( { - 3;3; - 1} \right)\) và mặt phẳng \(\left( P \right):\,\,2x - y + 2z - 8 = 0\). Xét điểm M là điểm thay đổi thuộc \(\left( P \right)\), giá trị nhỏ nhất của \(2M{A^2} + 3M{B^2}\) bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi \(I\left( {a;b;c} \right)\) là điểm thỏa mãn đẳng thức : \(2\overrightarrow {IA}  + 3\overrightarrow {IB}  = \overrightarrow 0 \)

\(\begin{array}{l} \Rightarrow 2\left( {2 - a; - 2 - b;4 - c} \right) + 3\left( { - 3 - a;3 - b; - 1 - c} \right) = \overrightarrow 0 \\ \Rightarrow \left\{ \begin{array}{l}4 - 2a - 9 - 3a = 0\\ - 4 - 2b + 9 - 3b = 0\\8 - 2c - 3 - 3c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 5a - 5 = 0\\ - 5b + 5 = 0\\ - 5c + 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = 1\end{array} \right. \Rightarrow I\left( { - 1;\;1;\;1} \right)\end{array}\)

Ta có :

\(\begin{array}{l}2M{A^2} + 3M{B^2} = 2{\overrightarrow {MA} ^2} + 3{\overrightarrow {MB} ^2}\\ = 2{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + 3{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2}\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right) + \overrightarrow {MI} \left( {2\overrightarrow {IA}  + 3\overrightarrow {IB} } \right)\\ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right)\end{array}\)

Do I, A, B cố định nên \(2I{A^2} + 3I{B^2} = const\).

 \( \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} \Leftrightarrow 5M{I^2}_{\min }\)\( \Leftrightarrow \) M là hình chiếu của I trên (P)

Gọi \(\left( \Delta  \right)\) là đường thẳng đi qua I vuông góc với (P) , ta có phương trình của \(\left( \Delta  \right):\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 - t\\z = 1 + 2t\end{array} \right.\).

M là hình chiếu của I lên (P) \( \Rightarrow M \in \left( \Delta  \right) \Rightarrow M\left( { - 1 + 2t;1 - t;1 + 2t} \right)\) .

Lại có \(M \in \left( P \right)\)  

\(\begin{array}{l} \Rightarrow 2\left( { - 1 + 2t} \right) - \left( {1 - t} \right) + 2\left( {1 + 2t} \right) - 8 = 0\\ \Leftrightarrow  - 2 + 4t - 1 + t + 2 + 4t - 8 = 0\\ \Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {1;0;3} \right)\end{array}\)

Khi đó ta có

\(\begin{array}{l}M{I^2} = 4 + 1 + 4 = 9;\;\;\;I{A^2} = 9 + 9 + 9 = 27;\;\;\;I{B^2} = 4 + 4 + 4 = 13\\ \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} = 5.9 + 2.27 + 3.12 = 135\end{array}\)

Câu 84 Trắc nghiệm

Trong không gian \(Oxyz\), gọi \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) sao cho khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất. Một vectơ chỉ phương của đường thẳng \(\Delta \) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Do \(\Delta \) là đường thẳng đi qua \(M\left( {0;0;2} \right)\) và song song với mặt phẳng \(\left( P \right):x + y + z + 3 = 0\) \( \Rightarrow \Delta  \subset \left( Q \right)\): qua M và song song \(\left( P \right)\).

Phương trình mặt phẳng (Q) là: \(x + y + z - 2 = 0\).

Dựng \(AH \bot \left( Q \right),AK \bot \Delta \). Ta có: \(AK \ge AH\). Do đó, khoảng cách từ \(A\left( {5;0;0} \right)\) đến đường thẳng \(\Delta \) nhỏ nhất và bằng AH khi và chỉ khi K trùng H

Khi đó, đường thẳng \(\Delta \) được xác định là đường thẳng đi qua M và H.

Phương trình đường thẳng AH là \(\left\{ \begin{array}{l}x = 5 + t\\y = t\\z = t\end{array} \right. \Rightarrow \)Giả sử \(H\left( {5 + t;t;t} \right) \Rightarrow 5 + t + t + t - 2 = 0 \Leftrightarrow t =  - 1 \Rightarrow H\left( {4; - 1; - 1} \right)\)

\( \Rightarrow \overrightarrow {MH}  = \left( {4; - 1; - 3} \right) \Rightarrow \Delta \) có 1 VTCP là \(\overrightarrow {{u_3}}  = \left( {4; - 1; - 3} \right)\).

Câu 85 Trắc nghiệm

Trong không gian \(Oxyz\), cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(A'\left( {\sqrt 3 ; - 1;1} \right)\), hai đỉnh \(B,C\) thuộc trục \(Oz\) và \(AA' = 1\) (\(C\) không trùng với \(O\)). Biết véc tơ \(\overrightarrow u  = \left( {a;b;2} \right)\) với \(a,b \in \mathbb{R}\) là một véc tơ chỉ phương của đường thẳng \(A'C\). Tính \(T = {a^2} + {b^2}\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Phương trình \(BC \equiv Oz:\left\{ \begin{array}{l}x = 0\\y = 0\\z = t\end{array} \right.\).

Mặt phẳng \(\left( {AMM'A'} \right)\) đi qua \(A'\) và vuông góc với \(BC\) nên \(\left( {AMM'A'} \right)\) đi qua \(A'\left( {\sqrt 3 ; - 1;1} \right)\) và nhận \(\overrightarrow k  = \left( {0;0;1} \right)\) làm VTPT hay \(\left( {AMM'A'} \right):0\left( {x - \sqrt 3 } \right) + 0\left( {y + 1} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow z = 1\).

\(M = BC \cap \left( {AMM'A'} \right) \Rightarrow t - 1 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {0;0;1} \right)\)

Mà \(AA' = 1,A'M = \sqrt {{{\left( {\sqrt 3  - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {1 - 1} \right)}^2}}  = 2\) \( \Rightarrow AM = \sqrt {A'{M^2} - A'{A^2}}  = \sqrt {{2^2} - {1^2}}  = \sqrt 3 \).

Tam giác \(ABC\) đều có độ dài đường cao \(AM = \dfrac{{BC\sqrt 3 }}{2} = \sqrt 3  \Rightarrow BC = 2\)

Gọi \(B\left( {0;0;m} \right),C\left( {0;0;n} \right)\) với \(n \ne 0\) thì \(BC = 2 \Leftrightarrow \left| {m - n} \right| = 2\) và \(M\left( {0;0;1} \right)\) là trung điểm \(BC \Leftrightarrow \dfrac{{m + n}}{2} = 1 \Leftrightarrow m + n = 2\).

Khi đó \(m = 0,n = 2\) vì \(n \ne 0\) hay \(C\left( {0;0;2} \right)\).

\( \Rightarrow \overrightarrow {A'C}  = \left( { - \sqrt 3 ;1;1} \right)\) hay \(2\overrightarrow {AC'}  = \left( { - 2\sqrt 3 ;2;2} \right)\) là một VTCP của \(A'C\).

Suy ra \(a =  - 2\sqrt 3 ,b = 2 \Rightarrow {a^2} + {b^2} = {\left( { - 2\sqrt 3 } \right)^2} + {2^2} = 16\).

Câu 86 Trắc nghiệm

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm \(M\left( {2;1;1} \right)\), cắt và vuông góc với đường thẳng \(\Delta :\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\). Tìm tọa độ giao điểm của d và mặt phẳng \(\left( {Oyz} \right)\).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(N = d \cap \Delta \). Giả sử \(N\left( {2 - 2t;\,\,8 + t;\,\,t} \right) \Rightarrow \overrightarrow {MN}  = \left( { - 2t;\,\,7 + t;\,\,t - 1} \right)\).

Đường thẳng \(\Delta :\,\,\dfrac{{x - 2}}{{ - 2}} = \dfrac{{y - 8}}{1} = \dfrac{z}{1}\) có 1 VTCP là \(\overrightarrow {{u_\Delta }}  = \left( { - 2;1;1} \right)\), đường thẳng \(d\) nhận \(\overrightarrow {MN} \) là 1 VTPT.

Do \(d \bot \Delta \) nên \(\overrightarrow {MN} .\overrightarrow {{u_\Delta }}  = 0\).

\(\begin{array}{l} \Leftrightarrow  - 2t.\left( { - 2} \right) + \left( {7 + t} \right).1 + \left( {t - 1} \right).1 = 0\\ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t =  - 1\\ \Rightarrow \overrightarrow {MN}  = \left( {2;6; - 2} \right)\end{array}\)

\( \Rightarrow \) Đường thẳng \(d\) đi qua \(M\left( {2;1;1} \right)\) và có 1 VTCP \(\overrightarrow {{u_d}}  = \dfrac{1}{2}\overrightarrow {MN}  = \left( {1;3; - 1} \right)\) có phương trình là: \(\left\{ \begin{array}{l}x = 2 + t'\\y = 1 + 3t'\\z = 1 - t'\end{array} \right.\).

Khi đó, giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) ứng với \(t'\) thỏa mãn \(x = 2 + t' = 0 \Leftrightarrow t' =  - 2\).

\( \Rightarrow \) Tọa độ giao điểm của \(d\) và mặt phẳng \(\left( {Oyz} \right)\) là: \(\left( {0; - 5;3} \right)\).

Câu 87 Trắc nghiệm

Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,4y - z + 3 = 0\) và hai đường thẳng \({\Delta _1}:\,\,\dfrac{{x - 1}}{1} = \dfrac{{y + 2}}{4} = \dfrac{{z - 2}}{3}\), \({\Delta _2}:\,\,\dfrac{{x + 4}}{5} = \dfrac{{y + 7}}{9} = \dfrac{z}{1}\). Đường thẳng \(d\) vuông góc với mặt phẳng \(\left( P \right)\) và cắt cả hai đường thẳng \({\Delta _1},\,\,{\Delta _2}\) có phương trình là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi \(M = d \cap {\Delta _1} \Rightarrow M\left( {1 + {t_1};\,\, - 2 + 4{t_1};\,\,2 + 3{t_1}} \right)\), \(N = d \cap {\Delta _2} \Rightarrow N\left( { - 4 + 5{t_2};\,\, - 7 + 9{t_2};\,\,{t_2}} \right)\).

\( \Rightarrow \overrightarrow {MN}  = \left( {5{t_2} - {t_1} - 5;\,\,9{t_2} - 4{t_1} - 5;\,\,{t_2} - 3{t_1} - 2} \right)\).

Vì \(d \bot \left( P \right):\,\,4y - z + 3 = 0\) có 1 VTPT là \(\overrightarrow n \left( {0;4; - 1} \right)\) nên \(\overrightarrow {MN} \) và \(\overrightarrow n \) là 2 vectơ cùng phương.

\( \Rightarrow \overrightarrow {MN}  = k\overrightarrow n \,\,\left( {k \ne 0} \right)\)\( \Leftrightarrow \left\{ \begin{array}{l}5{t_2} - {t_1} - 5 = 0\\9{t_2} - 4{t_1} - 5 = 4k\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\9{t_2} - 4{t_1} - 5 = 4k\\4{t_2} - 12{t_1} - 8 =  - 4k\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16{t_1} - 13 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\13{t_2} - 16\left( {5{t_2} - 5} \right) - 13 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 5{t_2} - 5\\ - 67{t_2} + 67 = 0\\{t_2} - 3{t_1} - 2 =  - k\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{t_2} = 1\\{t_1} = 0\\k = 1\end{array} \right.\) .

\( \Rightarrow M\left( {1;\,\, - 2;\,\,2} \right),\,\,N\left( {1;\,\,2;\,\,1} \right)\) \( \Rightarrow \overrightarrow {MN}  = \left( {0;4; - 1} \right)\).

Vậy phương trình đường thẳng \(d\) đi qua \(M\) và có 1 VTCP \(\overrightarrow {MN} \left( {0;4; - 1} \right)\) là: \(\left\{ \begin{array}{l}x = 1\\y =  - 2 + 4t\\z = 2 - t\end{array} \right.\)

Câu 88 Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng  \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d  sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Vì \(M \in d:\,\,\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1} \Rightarrow \) Gọi \(M\left( { - 2t;\,\,1 + t;\,\,t} \right)\).

Ta có: \(OM = \sqrt {{{\left( { - 2t} \right)}^2} + {{\left( {1 + t} \right)}^2} + {t^2}}  = \sqrt {6{t^2} + 2t + 1} \).

\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {2\left( { - 2t} \right) - \left( {1 + t} \right) + 2t - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \dfrac{{\left| { - 3t - 3} \right|}}{3} = \left| {t + 1} \right|\).

Theo bài ra ta có: M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow \sqrt {6{t^2} + 2t + 1}  = \left| {t + 1} \right|\).

\(\begin{array}{l} \Leftrightarrow 6{t^2} + 2t + 1 = {t^2} + 2t + 1\\ \Leftrightarrow 5{t^2} = 0 \Leftrightarrow t = 0\end{array}\)

\( \Rightarrow M\left( {0;1;0} \right)\)

Vậy có 1 điểm \(M\)  thỏa mãn yêu cầu bài toán là \(M\left( {0;1;0} \right)\).

Câu 89 Trắc nghiệm

Trong không gian với hệ trục tọa độ \({\mathop{\rm Oxyz}\nolimits} \), cho điểm \(A(4; - 3;5)\) và \(B(2; - 5;1).\)Viết phương trình mặt phẳng \((P)\) đi qua trung điểm \(I\) của đoạn thẳng \(AB\) và vuông góc với đường thẳng \((d):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(A\left( {4; - 3;5} \right),B\left( {2; - 5;1} \right)\) nên trung điểm của AB là \(I\left( {3; - 4;3} \right)\).

Đường thẳng \(\left( d \right):\dfrac{{x + 1}}{3} = \dfrac{{y - 5}}{{ - 2}} = \dfrac{{z + 9}}{{13}}\) có 1 VTCP là \(\overrightarrow {{u_d}}  = \left( {3; - 2;13} \right)\).

Mặt phẳng \(\left( P \right)\) vuông góc với d  nên mặt phẳng (P) có 1 VTPT \(\overrightarrow {{n_P}}  = \overrightarrow {{u_d}}  = \left( {3; - 2;13} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow n  = \left( {3; - 2;13} \right)\) và đi qua \(I\left( {3; - 4;3} \right)\) có phương trình là:

\(3\left( {x - 3} \right) - 2\left( {y + 4} \right) + 13\left( {z - 3} \right) = 0\)\( \Leftrightarrow 3x - 2y + 13z - 56 = 0\).

Câu 90 Trắc nghiệm

Đề thi THPT QG - 2021 - mã 101

Trong không gian \(Oxyz\), cho điểm \(M\left( { - 1;3;2} \right)\) và mặt phẳng \(\left( P \right):x - 2y + 4z + 1 = 0\). Đường thẳng đi qua \(M\) và vuông góc với \(\left( P \right)\) có phương trình là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(d\) là đường thẳng đi qua \(M\left( { - 1;3;2} \right)\) và vuông góc với mặt phẳng \(\left( P \right):\,\,x - 2y + 4z + 1 = 0\).

\( \Rightarrow \overrightarrow {{u_d}}  = \overrightarrow {{n_P}}  = \left( {1; - 2;4} \right)\).

\( \Rightarrow \) Phương trình đường thẳng là: \(\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{{ - 2}} = \dfrac{{z - 2}}{4}\).

Câu 91 Trắc nghiệm

Trong không gian \(Oxyz,\) gọi \(d'\) là hình chiếu vuông góc của đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) trên mặt phẳng \(\left( {Oxy} \right)\). Phương trình tham số của đường thẳng \(d'\) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Bước 1:

Đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) đi qua hai điểm \(O\left( {0;0;0} \right)\) và \(A\left( {1;1;1} \right)\).

Bước 2:

Hình chiếu của điểm \(O,\,\,A\) trên \(\left( {Oxy} \right)\) lần lượt là \(O\left( {0;0;0} \right)\) và \(A'\left( {1;1;0} \right)\).

Bước 3:

Khi đó hình chiếu của \(d\) là đường thẳng \(d'\) đi qua \(O,\,\,A'\), nhận \(\overrightarrow {OA'}  = \left( {1;1;0} \right)\) là 1 VTCP nên có phương trình tham số là \(\left\{ \begin{array}{l}x = t\\y = t\\z = 0\end{array} \right.\).

Câu 92 Tự luận

Trong không gian \(Oxyz,\) gọi \(M'\) là điểm đối xứng của điểm \(M\left( {2;0;1} \right)\) qua đường thẳng \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\). Tính khoảng cách từ điểm \(M'\) đến mặt phẳng \(\left( {Oxy} \right).\)

Đáp án 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án 

Bước 1: Viết phương trình mặt phẳng \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \).

Ta có: \(\Delta :\,\,\,\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\) và \(M\left( {2;\,\,0;\,\,1} \right)\)

Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và vuông góc với \(\Delta \) \( \Rightarrow \overrightarrow {{n_P}}  = \overrightarrow {{u_\Delta }}  = \left( {1;\,\,2;\,\,1} \right).\)

\( \Rightarrow \left( P \right):\,\,\,x - 2 + 2y + z - 1 = 0\) \( \Leftrightarrow x + 2y + z - 3 = 0.\)

Bước 2:  Tìm tọa độ điểm \(H = \left( P \right) \cap \Delta \), khi đó \(H\) là trung điểm của \(MM'\), từ đó tìm tọa độ điểm \(M'\).

Gọi \(H\) là giao điểm của \(\left( P \right)\) và \(\Delta \)

\( \Rightarrow \) Toạ độ của \(H\) là nghiệm của hệ phương trình:

\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\left\{ \begin{array}{l}\dfrac{x}{1} = \dfrac{{y + 2}}{2} = \dfrac{{z - 1}}{1}\\x + 2y + z - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\x + 2y + z - 3 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t - 4 + 4t + 1 + t - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = t\\y =  - 2 + 2t\\z = 1 + t\\t = 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\\z = 2\end{array} \right. \Rightarrow H\left( {1;\,\,0;\,\,2} \right)\end{array}\)

Ta có: \(M'\) là điểm đối xứng của \(M\) qua \(\Delta \) \( \Rightarrow H\) là trung điểm của \(MM'\) \( \Rightarrow M'\left( {0;\,\,0;\,\,3} \right)\)

Bước 3: Khoảng cách từ \(M\left( {{x_0};{y_0}} \right)\) đến mặt phẳng \(\left( P \right)\)

Ta có: \(\left( {Oxy} \right):\,\,\,z = 0.\)

\( \Rightarrow d\left( {M;\,\,\left( {Oxy} \right)} \right) = \dfrac{{\left| 3 \right|}}{1} = 3.\)

Câu 93 Tự luận

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = 2 - 2t\\y = 0\\z = t\end{array} \right.\). Gọi \(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \((Oxy)\). Biết phương trình đó có dạng: \( d':\,\,\left\{ \begin{array}{l}x = a+ bt\\y = c\\z = t\end{array} \right.\)

Tính $a+b+c$.

Đáp án 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án 

Bước 1: Gọi \(A = d \cap Oxy \Rightarrow \) Tìm tọa độ điểm \(A\).

Mặt phẳng \(Oxy\) có phương trình \(z = 0\).

Gọi \(A = d \cap Oxy \Rightarrow \) Tọa độ của \(A\) là nghiệm của hệ phương trình

\(\left\{ \begin{array}{l}x = 2 - 2t\\y = 0\\z = t\\z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 0\\z = 0\end{array} \right.\\\Rightarrow A\left( {2;0;0} \right)\)

Bước 2: Lấy điểm \(B\) bất kì thuộc \(d\). Gọi \(B'\) là điểm đối xứng với \(B\) qua \(Oxy \Rightarrow \) Tìm tọa độ điểm \(B'\).

Lấy \(B\left( {0;0;1} \right) \in d\). Gọi \(B'\) là điểm đối xứng với \(B\) qua \(Oxy \Rightarrow B'\left( {0;0; - 1} \right)\).

Bước 3: \(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \(Oxy\) \( \Rightarrow d'\) đi qua \(A,\,\,B'\). Viết phương trình đường thẳng \(d'\).

\(d'\) là đường thẳng đối xứng với \(d\) qua mặt phẳng \(Oxy\) \( \Rightarrow d'\) đi qua \(A,\,\,B'\).

\( \Rightarrow d'\) nhận \(\overrightarrow {AB'}  = \left( { - 2;0; - 1} \right)//\left( {2;0;1} \right)\) là 1 VTCP \( \Rightarrow d':\,\,\left\{ \begin{array}{l}x = 2 + 2t\\y = 0\\z = t\end{array} \right.\)

=>$a=2, b=2, c=0$

=>$a+b+c=2+2+0=4$

Câu 94 Tự luận

Trong không gian với hệ tọa độ \(Oxyz\), khoảng cách giữa đường thẳng \(d:\,\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{2} = \dfrac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):\,\,x - 2y + 2z + 4 = 0\) là

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Ta có \(\overrightarrow u  = \left( {2;2;1} \right)\) là 1 VTCP của \(d;\,\,\overrightarrow n  = \left( {1; - 2;2} \right)\) là 1 VTPT của \(\left( P \right)\).

\(\overrightarrow u .\overrightarrow n  = 2.1 + 2\left( { - 2} \right) + 1.2 = 0 \Rightarrow \overrightarrow u  \bot \overrightarrow n  \Rightarrow d//\left( P \right)\).

Lấy \(M\left( {1;3;2} \right) \in d \Rightarrow d\left( {d;\left( P \right)} \right) = d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {1 - 2.3 + 2.2 + 4} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 1\).

Câu 95 Tự luận

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,2x - 2y - z + 7 = 0\) và điểm \(A\left( {1;1; - 2} \right)\). Điểm \(H\left( {a;b;c} \right)\) là hình chiếu vuông góc của \(A\) trên \(\left( P \right)\). Tổng \(a + b + c\) bằng:

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

Bước 1: Viết phương trình đường thẳng \(\Delta \) đi qua \(A\) và vuông góc với \(\left( P \right)\).

Gọi \(\Delta \) là đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\), phương trình đường thẳng \(\Delta \) là:

\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\end{array} \right.\,\,\,\left( \Delta  \right)\)

Bước 2: Tìm \(H = \Delta  \cap \left( P \right)\).

Vì \(H\) là hình chiếu vuông góc của \(A\) trên \(\left( P \right)\) nên \(H = \Delta  \cap \left( P \right)\) \( \Rightarrow \) Tọa độ điểm \(H\) là nghiệm của hệ phương trình

\(\begin{array}{l}\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\2x - 2y - z + 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\2 + 4t - 2 + 4t + 2 + t + 7 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - 2t\\z =  - 2 - t\\9t + 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  - 1\\x =  - 1\\y = 3\\z =  - 1\end{array} \right. \Rightarrow H\left( { - 1;3; - 1} \right)\end{array}\)

Bước 3: Tìm \(a,\,\,b,\,\,c\) và tính tổng.

\( \Rightarrow a =  - 1,\,\,b = 3,\,\,c =  - 1\).

Vậy \(a + b + c =  - 1 + 3 - 1 = 1\).

Câu 96 Tự luận

Trong không gian với hệ tọa độ Oxyz, điểm $A’(a;b;c)$ đối xứng với điểm \(A\left( { - 1;0;3} \right)\) qua mặt phẳng \(\left( P \right):x + 3y - 2z - 7 = 0\). Tìm $a+b+c$

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

\(A'\left( {a;b;c} \right)\) là điểm đối xứng với điểm \(A\left( { - 1;0;3} \right)\) qua mặt phẳng \(\left( P \right):x + 3y - 2z - 7 = 0\).

Khi đó, ta có: \(\left\{ \begin{array}{l}\overrightarrow {AA'} //\overrightarrow {{n_{\left( P \right)}}} \\I \in \left( P \right)\end{array} \right.\), với I là trung điểm của AA’

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{a + 1}}{1} = \dfrac{{b - 0}}{3} = \dfrac{{c - 3}}{{ - 2}}\\\left( {\dfrac{{a - 1}}{2}} \right) + 3.\dfrac{b}{2} - 2.\dfrac{{c + 3}}{2} - 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{a + 1}}{1} = \dfrac{b}{3} = \dfrac{{c - 3}}{{ - 2}}\\a + 3b - 2c = 21\end{array} \right.\)

\( \Rightarrow \dfrac{{a + 1}}{1} = \dfrac{b}{3} = \dfrac{{c - 3}}{{ - 2}} = \dfrac{{a + 1 + 3b - 2c + 6}}{{1 + 9 + 4}} = \dfrac{{21 + 1 + 6}}{{14}} = 2\)\( \Rightarrow \left\{ \begin{array}{l}a = 1\\b = 6\\c =  - 1\end{array} \right.\)\( \Rightarrow A'\left( {1;6; - 1} \right)\)

Vậy $a+b+c=1+6+(-1)=6$

Câu 97 Trắc nghiệm

Trong không gian tọa độ $O x y z$, cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{3} = \dfrac{{z - 9}}{{ - 1}}\) và mặt phẳng \((\alpha )\) có phương trình \({m^2}x - my - 2z + 19 = 0\) với \(m\) là tham số. Tập hợp các giá trị \(m\) thỏa mãn \(d//(\alpha )\) là

Bạn đã chọn sai | Đáp án đúng:

\(\{ 2\} \).

Bạn đã chọn đúng | Đáp án đúng:

\(\{ 2\} \).

Bạn chưa làm câu này | Đáp án đúng:

\(\{ 2\} \).

Đường thẳng \(d\) đi qua điểm \(M(1;2;9)\) và vectơ chỉ phương \(\vec u(1;3; - 1)\).

Mặt phẳng \((\alpha )\) có vectơ pháp tuyến \(\vec n\left( {{m^2}; - m; - 2} \right)\).

\(d//(\alpha ) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\vec u \bot \vec n}\\{M \notin (\alpha )}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{m^2} - 3m + 2 = 0}\\{{m^2} - 2m + 1 \ne 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left( {m - 1} \right)\left( {m - 2} \right) = 0\\{\left( {m - 1} \right)^2} \ne 0\end{array} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 2\end{array} \right.\\m \ne 1\end{array}\end{array}} \right.\)\( \Leftrightarrow m = 2\)

Vậy \(d//(\alpha ) \Leftrightarrow m = 2\).

Câu 98 Trắc nghiệm

Trong không gian với hệ trục tọa độ vuông góc \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{1} = \dfrac{{y + 1}}{2} = \dfrac{{z - 2}}{{ - 1}}\) và mặt phẳng \(\left( P \right):x + y + z - 3 = 0\). Phương trình đường thẳng d' đối xứng với d qua (P) là

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Bước 1: Lấy điểm \(B\left( {0; - 1;2} \right)\) thuộc d.

Lấy điểm \(B\left( {0; - 1;2} \right)\) thuộc d.

Bước 2: Tìm giao điểm A của d và (P)

Gọi A là giao điểm của d và (P).

Khi đó \(A\left( {t; - 1 + 2t;2 - t} \right)\). Thay vào (P) ta được:

\(t - 1 + 2t + 2 - t - 3 = 0 \Leftrightarrow t = 1\)

=> \(A\left( {1;1;1} \right)\)

Bước 3: Tìm d’

Gọi H là hình chiếu của B lên (P), B’ là điểm đối xứng B qua (P).

Khi đó H là trung điểm của BB’

Ta có đường thẳng BH đi qua B(0;-1;2) và nhận \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {1;1;1} \right)\) làm vecto chỉ phương có phương trình là:

\(\left\{ \begin{array}{l}x = t\\y =  - 1 + t\\z = 2 + t\end{array} \right.\)

\( =  > H\left( {t; - 1 + t;2 + t} \right)\). Thay vào (P) ta được:

\(t - 1 + t + 2 + t - 3 = 0 \Leftrightarrow t = \dfrac{2}{3}\)

\( =  > H\left( {\dfrac{2}{3}; - \dfrac{1}{3};\dfrac{8}{3}} \right)\)\( =  > B'\left( {\dfrac{4}{3};\dfrac{1}{3};\dfrac{{10}}{3}} \right)\)

Vecto chỉ phương của AB’ là:

\(AB' = \left( {\dfrac{1}{3}; - \dfrac{2}{3};\dfrac{7}{3}} \right)\)

Đường thẳng \(d':\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{{ - 2}} = \dfrac{{z - 1}}{7}\)

Câu 99 Trắc nghiệm

Trong không gian Oxyz, cho điểm \(A( - 4; - 3;3)\) và mặt phẳng \((P):x + y + z = 0\). Đường thẳng đi qua \(A\), cắt trục $O z$ và song song với \((P)\) có phương trình là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có

\(\overrightarrow {AB}  = (4;3;t - 3)\)

Do \(d//(P)\) nên \(\overrightarrow {AB}  \cdot \overrightarrow {{n_P}}  = 0\)

\( \Leftrightarrow 4 + 3 + t - 3 = 0 \Leftrightarrow t =  - 4\)

\( \Rightarrow \overrightarrow {AB}  = (4;3; - 7)\)

Vậy đường thẳng cần tìm \(d:\dfrac{{x + 4}}{4} = \dfrac{{y + 3}}{3} = \dfrac{{z - 3}}{{ - 7}}\)

\(\Leftrightarrow \dfrac{{x + 4}}{4}+1 = \dfrac{{y + 3}}{3} +1= \dfrac{{z - 3}}{{ - 7}}+1\)

\(\Leftrightarrow \dfrac{{x + 8}}{4} = \dfrac{{y + 6}}{3} = \dfrac{{z - 10}}{{ - 7}}\)

Câu 100 Trắc nghiệm

Đề thi THPT QG 2019 – mã đề 104

Trong không gian \(Oxyz\) , cho các điểm \(A\left( {2; - 1;0} \right),\,B\left( {1;2;1} \right),\,C\left( {3; - 2;0} \right)\) và \(D\left( {1;1; - 3} \right).\) Đường thẳng đi qua \(D\) và vuông góc với mặt phẳng \(\left( {ABC} \right)\) có phương trình là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( { - 1;3;1} \right)\\\overrightarrow {AC}  = \left( {1; - 1;0} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {1;1; - 2} \right)\).

Gọi đường thẳng cần tìm là \(d\). Do \(d \bot \left( {ABC} \right) \Rightarrow \overrightarrow {{u_d}}  = \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {1;1; - 2} \right)\).

Do đó loại đáp án C và D.

Thay tọa độ điểm \(D\) vào phương trình đường thẳng ở đáp án B ta có: \(\left\{ \begin{array}{l}1 = t\\1 = t\\ - 3 = 1 - 2t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t =  - 2\end{array} \right. \Leftrightarrow t \in \emptyset \)

=> \(D\) không thuộc phương trình đường thẳng ở đáp án B.