Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + 2y = 0\). Phương trình nào sau đây là phương trình đường thẳng qua \(A\left( { - 1;3; - 4} \right)\) cắt trục \(Ox\) và song song với mặt phẳng \(\left( P \right)\):
Trả lời bởi giáo viên
Mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}} = \left( {1;2;0} \right)\).
Gọi \(d\) là đường thẳng cần tìm. Ta có \(d \cap Ox = B\left( {b;0;0} \right)\).
Suy ra \(d\) có VTCP \(\overrightarrow {AB} = \left( {b + 1; - 3;4} \right)\).
Do \(d\parallel \left( P \right)\) nên \(\overrightarrow {AB} \bot \overrightarrow {{n_P}} \Rightarrow \left( {b + 1} \right).1 + \left( { - 3} \right).2 + 4.0 = 0 \Leftrightarrow b = 5 \Rightarrow B\left( {5;0;0} \right).\)
Đường thẳng cần tìm đi qua hai điểm \(A,{\rm{ }}B\) nên có phương trình \(\left\{ \begin{array}{l}x = 5 + 6t\\y = - 3t\\z = 4t\end{array} \right.\).
Hướng dẫn giải:
- Gọi tọa độ giao điểm \(B\) của \(d\) với \(Ox\).
- \(d//\left( P \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_P}} = 0\)