Cho hàm số $y = {x^4} - 2(m + 1){x^2} + m + 2$ có đồ thị $\left( C \right)$. Gọi $\Delta $ là tiếp tuyến với đồ thị $\left( C \right)$ tại điểm thuộc $\left( C \right)$ có hoành độ bằng $1$. Với giá trị nào của tham số $m$ thì $\Delta $ vuông góc với đường thẳng $d:y = - \dfrac{1}{4}x - 2016$
Ta có: $y' = 4{{\text{x}}^3} - 4\left( {m + 1} \right)x$$ \Rightarrow y'\left( 1 \right) = - 4m$
Vì tiếp tuyến $\Delta $ vuông góc với đường thẳng $d$ nên \(k.\left( { - \dfrac{1}{4}} \right) = - 1 \Leftrightarrow k = 4 = y'\left( 1 \right) =-4m\)
Vậy $m$ thỏa mãn đề bài là $m = - 1$
Cho hàm số $y = \dfrac{{2x - 1}}{{x - 1}}\,\,\,\left( C \right)$. Tìm điểm $M$ thuộc $(C)$ sao cho tiếp tuyến tại $M$ và hai trục tọa độ tạo thành tam giác cân.
TXĐ: $D = R\backslash \left\{ 1 \right\}$
Ta có: $y' = \dfrac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}$
Gọi $M\left( {{x_o};{y_o}} \right)$ là điểm thuộc đồ thị hàm số $(C)$. Khi đó phương trình tiếp tuyến của đồ thị hàm số $(C)$ tại điểm $M$ là: $\Delta :\,\,y = y'\left( {{x_o}} \right)\left( {x - {x_o}} \right) + {y_o} = \dfrac{{ - 1}}{{{{\left( {{x_o} - 1} \right)}^2}}}\left( {x - {x_o}} \right) + \dfrac{{2{x_o} - 1}}{{{x_o} - 1}}$
Gọi $A\left( {{x_A};0} \right)$ là giao điểm của $\Delta $ và trục $Ox$; $B\left( {0;{y_B}} \right)$ là giao điểm của $\Delta $ và trục $Oy$.
$ \Rightarrow \left\{ \begin{gathered}{x_A} = 2x_o^2 - 2{x_o} + 1 \hfill \\ {y_B} = \dfrac{{2x_o^2 - 2{x_o} + 1}}{{{{\left( {{x_o} - 1} \right)}^2}}} \hfill \\ \end{gathered} \right.$
Theo đề bài ta có tiếp tuyến tại $M$ và hai trục tọa độ tạo thành tam giác cân
$ \Rightarrow $ tam giác $OAB$ cân tại $O$
$ \Leftrightarrow OA = OB \Leftrightarrow \left| {{x_A}} \right| = \left| {{y_B}} \right|$
\(\begin{array}{l} \Leftrightarrow \left| {2x_o^2 - 2{x_o} + 1} \right| = \left| {\dfrac{{2x_o^2 - 2{x_o} + 1}}{{{{\left( {{x_o} - 1} \right)}^2}}}} \right|\\ \Leftrightarrow \left| {2x_o^2 - 2{x_o} + 1} \right|\left( {1 - \dfrac{1}{{{{\left( {{x_o} - 1} \right)}^2}}}} \right) = 0\\ \Leftrightarrow \left\{ \begin{array}{l}\left| {2x_o^2 - 2{x_o} + 1} \right| = 0\\1 - \dfrac{1}{{{{\left( {{x_o} - 1} \right)}^2}}} = 0\end{array} \right. \Leftrightarrow {\left( {{x_o} - 1} \right)^2} = 1\\ \Leftrightarrow \left[ \begin{array}{l}{x_o} = 0\left( {tm} \right)\\{x_o} = 2\left( {tm} \right)\end{array} \right.\end{array}\)
Khi đó ta có hai điểm $M$ là: $M\left( {0;1} \right)$ và $M\left( {2;3} \right)$
Cho hàm số $y = f\left( x \right) = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12$ có đồ thị hàm số $\left( {{C_m}} \right)$. Khi tham số m thay đổi, các đồ thị $\left( {{C_m}} \right)$ đều tiếp xúc với một đường thẳng cố định. Đường thẳng này có phương trình:
Ta có: $y' = {x^2} - 2mx - 6m$.
Gọi điểm $M(x;y)$ là điểm cố định của đồ thị hàm số.
Khi đó:
\(\begin{array}{l}y = \dfrac{{{x^3}}}{3} - m{x^2} - 6mx - 9m + 12 \Leftrightarrow - \left( {{x^2} + 6x + 9} \right).m + \dfrac{{{x^3}}}{3} + 12 - y = 0,\forall m\\ \Leftrightarrow \left\{ \begin{array}{l} - \left( {{x^2} + 6x + 9} \right) = 0 \\ \dfrac{{{x^3}}}{3} + 12 - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + 3} \right)^2} = 0 \\ \dfrac{{{x^3}}}{3} + 12 - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 3\end{array} \right.\end{array}\)
Do đó $M\left( { - 3;3} \right)$ là điểm cố định thuộc đồ thị $\left( {{C_m}} \right)$.
$ \Rightarrow y'\left( { - 3} \right) = 9$
Vậy phương trình tiếp tuyến cố định của đồ thị hàm số $\left( {{C_m}} \right)$ tại $M$ là:$y = 9\left( {x + 3} \right) + 3 = 9x + 30$
Cho hàm số $y = f(x) = {x^3} + 6{x^2} + 9x + 3{\text{ }}\left( C \right)$.Tồn tại hai tiếp tuyến của $(C)$ phân biệt và có cùng hệ số góc $k$, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục $Ox, Oy$ tương ứng tại $A$ và $B$ sao cho $OA = 2017.OB.$ Hỏi có bao nhiêu giá trị của $k$ thỏa mãn yêu cầu bài toán?
Ta có $y' = 3{x^2} + 12x + 9;y'' = 6x + 12 = 0 \Leftrightarrow x = -2$
Điểm uốn của đồ thị hàm số là $U\left( -2;1 \right)$
Xét đường thẳng $d$ đi qua $U\left( -2;1 \right)$ có phương trình $y = {k_d}\left( {x + 2} \right) + 1$ hay $y = {k_d}x + 2{k_d} + 1$
$d$ cắt $Ox, Oy$ lần lượt tại $A\left( { - \dfrac{{2{k_d} + 1}}{{{k_d}}};0} \right),B\left( {0;2{k_d} + 1} \right)$
$OA = 2017.OB \Leftrightarrow \left| {\dfrac{{2{k_d} + 1}}{{{k_d}}}} \right| = 2017\left| {2{k_d} + 1} \right| \Leftrightarrow {k_d} = \pm \dfrac{1}{{2017}};{k_d} = - \dfrac{1}{2}$
Nếu ${k_d} = - \dfrac{1}{2}$ thì $y = - \dfrac{1}{2}x$ nên $A \equiv B$ (loại)
Khi đó ta có hệ số góc của $d$ là ${k_d} = \pm \dfrac{1}{{2017}}$
Do đó có 2 đường thẳng $d$ thỏa mãn
Từ đó suy ra có $2$ giá trị $k$ thỏa mãn bài toán.
Tìm tất cả các giá trị của tham số $m$ để đường thẳng $y = - 2x + m$ cắt đồ thị $(H)$ của hàm số $y = \dfrac{{2x + 3}}{{x + 2}}$ tại hai điểm$A,{\text{ }}B$ phân biệt sao cho $P = k_1^{2018} + k_2^{2018}$ đạt giá trị nhỏ nhất (với ${k_1},{k_2}$ là hệ số góc của tiếp tuyến tại $A,{\text{ }}B$ của đồ thị $(H)$.
Ta có: \(y' = \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)
Xét phương trình hoành độ giao điểm của đường thẳng $d$ đã cho và $\left( H \right)$.
$\begin{array}{l} - 2x + m = \dfrac{{2x + 3}}{{x + 2}}\\ \Leftrightarrow \left( {x + 2} \right)\left( { - 2x + m} \right) = 2x + 3\\ \Leftrightarrow - 2{x^2} + \left( {m - 4} \right)x + 2m = 2x + 3\\ \Leftrightarrow 2{x^2} + \left( {6 - m} \right)x + 3 - 2m = 0{\rm{ }}\left( * \right)\end{array}$
$d$ cắt $\left( H \right)$ tại 2 điểm phân biệt $ \Leftrightarrow $ Phương trình (*) có $2$ nghiệm phân biệt khác \( - 2\)
$ \Leftrightarrow \left\{ \begin{array}{l}\Delta = {\left( {6 - m} \right)^2} - 8\left( {3 - 2m} \right) > 0\\2.{\left( { - 2} \right)^2} + \left( {6 - m} \right).\left( { - 2} \right) + 3 - 2m \ne 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 12 > 0\\ - 1 \ne 0\end{array} \right.$
(luôn đúng)
Gọi hoành độ giao điểm hai điểm \(A,B\) lần lượt là \({x_1},{x_2}\), khi đó:\(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{m - 6}}{2}\\{x_1}{x_2} = \dfrac{{3 - 2m}}{2}\end{array} \right.\)
Ta có:
\({k_1}.{k_2} = \dfrac{1}{{{{\left( {{x_1} + 2} \right)}^2}}}.\dfrac{1}{{{{\left( {{x_2} + 2} \right)}^2}}} = \dfrac{1}{{{{\left[ {\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)} \right]}^2}}}\)
\( = \dfrac{1}{{{{\left[ {{x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) + 4} \right]}^2}}} = \dfrac{1}{{{{\left[ {\dfrac{{3 - 2m}}{2} + 2.\dfrac{{m - 6}}{2} + 4} \right]}^2}}}\)
\( = \dfrac{1}{{{{\left( {\dfrac{{3 - 2m + 2m - 12 + 8}}{2}} \right)}^2}}} = 4\)
Khi đó \(P = k_1^{2018} + k_2^{2018} \ge 2{\left| {{k_1}{k_2}} \right|^{1009}} = {2.4^{1009}} = {2^{2019}}\).
Dấu “=” xảy ra khi \({k_1} = {k_2} = 2\) hay hai tiếp tuyến tại hai giao điểm song song.
Điều này chỉ xảy ra khi hai giao điểm này đối xứng với nhau qua tâm đối xứng \(I\) của đồ thị \(\left( H \right)\) hay \(d\) đi qua \(I\left( { - 2;2} \right)\) là giao điểm hai đường tiệm cận của đồ thị hàm số.
\( \Leftrightarrow I \in d \Leftrightarrow 2 = -2.\left( {-2} \right) + m \Leftrightarrow m = -2\)
Biết đồ thị các hàm số $y = {x^3} + \dfrac{5}{4}x - 2$ và $y = {x^2} + x - 2$ tiếp xúc nhau tại điểm $M({x_0}\,;\,{y_0})$. Tìm ${x_0}.$
Hoành độ tiếp điểm của hai đồ thị hàm số là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + \dfrac{5}{4}x - 2 = {x^2} + x - 2\\3{x^2} + \dfrac{5}{4} = 2x + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^3} - {x^2} + \dfrac{1}{4}x = 0\\3{x^2} - 2x + \dfrac{1}{4} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \dfrac{1}{2}\end{array} \right.\\\left[ \begin{array}{l}x = \dfrac{1}{2}\\x = \dfrac{1}{6}\end{array} \right.\end{array} \right. \Leftrightarrow x = \dfrac{1}{2}\end{array}\)
Vậy $x = \dfrac{1}{2}$ là hoành độ điểm tiếp xúc.
Cho hàm số $\left( {{C_m}} \right):y = {x^3} + m{x^2} - 9x - 9m.$ Tìm $m$ để $\left( {{C_m}} \right)$ tiếp xúc với $Ox$:
Để đồ thị hàm số $\left( {{C_m}} \right)$ tiếp xúc với trục $Ox$ thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.
Ta có: $y = 0 \Leftrightarrow {x^3} + m{x^2} - 9x - 9m = 0(1)$
$ \Leftrightarrow \left( {x + m} \right)\left( {{x^2} - 9} \right) = 0$
$ \Leftrightarrow \left[ \begin{gathered} x = - m \hfill \\x = \pm 3 \hfill \\ \end{gathered} \right.$
Để $(1)$ có $2$ nghiệm phân biệt $ \Leftrightarrow m = \pm 3.$
Gọi \(S\) là tập hợp các giá trị nguyên của \(m\) để mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - \left( {m - 1} \right){x^2} + \left( {m - 1} \right)x + 5\) đều có hệ số góc dương. Số phần tử của tập \(S\) là:
Gọi \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số.
Ta có \(y' = 3{x^2} - 2\left( {m - 1} \right)x + m - 1\).
Suy ra hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm \(M\) là \(k = y'\left( {{x_0}} \right) = 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1\).
Theo bài ra ta có:
\(\begin{array}{l}k > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow 3x_0^2 - 2\left( {m - 1} \right){x_0} + m - 1 > 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}3 > 0\,\,\left( {luon\,\,dung} \right)\\\Delta ' = {\left( {m - 1} \right)^2} - 3\left( {m - 1} \right) < 0\,\end{array} \right.\,\forall x \in \mathbb{R}\\ \Leftrightarrow {m^2} - 2m + 1 - 3m + 3 < 0\\ \Leftrightarrow {m^2} - 5m + 4 < 0\\ \Leftrightarrow 1 < m < 4\end{array}\)
Mà \(m \in \mathbb{Z} \Rightarrow S = \left\{ {2;3} \right\}\).
Vậy tập hợp \(S\) có 2 phần tử.
Cho hàm số \(y = \dfrac{{2x - 2}}{{x - 2}}\) có đồ thị là\(\left( C \right)\), \(M\)là điểm thuộc \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)cắt hai đường tiệm cận của \(\left( C \right)\) tại hai điểm \(A\), \(B\) thỏa mãn \(AB = 2\sqrt 5 \). Gọi \(S\) là tổng các hoành độ của tất cả các điểm \(M\)thỏa mãn bài toán. Tìm giá trị của \(S\).
TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\). Đồ thị hàm số có hai đường tiệm cận là \(x = 2\) và \(y = 2\).
Ta có \(y' = \dfrac{{ - 2}}{{{{\left( {x - 2} \right)}^2}}}\). Gọi \(M\left( {m;\,\dfrac{{2m - 2}}{{m - 2}}} \right)\) thuộc đồ thị hàm số.
Phương trình tiếp tuyến \(d\) của \(\left( C \right)\) tại \(M\): \(y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\).
Cho \(x = 2 \Rightarrow y = \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {2 - m} \right) + \dfrac{{2m - 2}}{{m - 2}}\)\( \Leftrightarrow y = \dfrac{2}{{m - 2}} + \dfrac{{2m - 2}}{{m - 2}} = \dfrac{{2m}}{{m - 2}}\).
\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(x = 2\) là \(A\left( {2;\,\dfrac{{2m}}{{m - 2}}} \right)\).
Cho \(y = 2 \Rightarrow \dfrac{{ - 2}}{{{{\left( {m - 2} \right)}^2}}}\left( {x - m} \right) + \dfrac{{2m - 2}}{{m - 2}} = 2\).
\(\begin{array}{l} \Leftrightarrow - 2\left( {x - m} \right) + \left( {2m - 2} \right)\left( {m - 2} \right) = 2{\left( {m - 2} \right)^2}\\ \Leftrightarrow - 2x + 2m + 2{m^2} - 6m + 4 = 2{m^2} - 8m + 8\\ \Leftrightarrow 2x = 4m - 4 \Leftrightarrow x = 2m - 2\end{array}\)
\( \Rightarrow \) Giao điểm của \(d\) và đường thẳng \(y = 2\) là \(B\left( {2m - 2;\,2} \right)\).
Ta có: \(AB = 2\sqrt 5 \Leftrightarrow {\left( {2m - 4} \right)^2} + {\left( {2 - \dfrac{{2m}}{{m - 2}}} \right)^2} = 20\)
\(\begin{array}{l} \Leftrightarrow 4{\left( {m - 2} \right)^2} + \dfrac{{16}}{{{{\left( {m - 2} \right)}^2}}} = 20\\ \Leftrightarrow {\left( {m - 2} \right)^4} - 5{\left( {m - 2} \right)^2} + 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{\left( {m - 2} \right)^2} = 1\\{\left( {m - 2} \right)^2} = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 3\\m = 1\\m = 4\\m = 0\end{array} \right.\end{array}\)
Vậy \(S = 3 + 1 + 4 + 0 = 8\).
Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
Ta có: $y' = 3{{\text{x}}^2} - 6{\text{x}} + 2$
Số cặp điểm thuộc đồ thị $\left( C \right)$ có tiếp tuyến song song nhau
$ \Leftrightarrow $ số cặp nghiệm phương trình $3{{\text{x}}^2} - 6{\text{x}} + 2 = m$ với $m \in R$ thỏa mãn phương trình $3{x^2} - 6x + 2 = m$ có hai nghiệm phân biệt.Có vô số giá trị của $m$ để phương trình trên có hai nghiệm phân biệt nên có vô số cặp điểm.
Cho hàm số $y = {x^3} + ax + b\,\,\left( {a \ne b} \right)$. Tiếp tuyến với đồ thị hàm số $f\left( x \right)$ tại $x = a$ và $x = b$ song song với nhau. Tính $f\left( 1 \right).$
Ta có: $f'\left( x \right) = 3{x^2} + a$.
Hệ số góc của tiếp tuyến của đồ thị hàm số tại $x = a$ là: $f'\left( a \right) = 3{a^2} + a$.
Hệ số góc của tiếp tuyến của đồ thị hàm số tại $x = b$ là: $f'\left( b \right) = 3{b^2} + a$.
Tiếp tuyến tại $x = a$ và $x = b$ song song với nhau $f'\left( a \right) = f'\left( b \right)$
$\begin{gathered} \Leftrightarrow 3{a^2} + a = 3{b^2} + a \hfill \\ \Leftrightarrow 3{a^2} = 3{b^2} \hfill \\ \Leftrightarrow a = - b\,\,\left( {do\,\,a \ne b} \right) \hfill \\ \end{gathered} $.
Khi đó $f\left( x \right) = {x^3} + ax - a$$ \Rightarrow f\left( 1 \right) = 1 + a - a = 1.$
Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
Ta có:
$y'=\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'=\dfrac{f'\left( x \right)\left( g\left( x \right)+1 \right)-g'\left( x \right)\left( f\left( x \right)+3 \right)}{{{\left( g\left( x \right)+1 \right)}^{2}}}$ $\begin{array}{l} \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) + 1} \right) - g'\left( 1 \right)\left( {f\left( 1 \right) + 3} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right) = g'\left( 1 \right)\\ \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) - f\left( 1 \right) - 2} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right)\end{array}$
$\begin{array}{l} \Rightarrow g\left( 1 \right) - f\left( 1 \right) - 2 = {\left( {g\left( 1 \right) + 1} \right)^2}\\ \Rightarrow f\left( 1 \right) = - {g^2}\left( 1 \right) - g\left( 1 \right) - 3\end{array}$
Xét phương trình \( - {g^2}\left( 1 \right) - g\left( 1 \right) - 3 = 0\) có:
$\Delta = {\left( { - 1} \right)^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 11 < 0;a = - 1 < 0$
$\dfrac{{ - \Delta }}{{4{\rm{a}}}} = \dfrac{{ - 11}}{4}\,\,\, \Rightarrow f\left( 1 \right) \le \dfrac{{ - 11}}{4}$
Cho hàm số \(y = \dfrac{{x + 2}}{{x - 1}}\) có đồ thị là \(\left( C \right)\) tại điểm \(M\left( {2;4} \right)\) có hệ số góc bằng bao nhiêu?
Đáp án:
Đáp án:
Bước 1: Tìm tập xác định.
Xét hàm số: \(y = \dfrac{{x + 2}}{{x - 1}}\,\,\,\left( C \right)\)
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
Bước 2: Tìm y' và thay x=2 vào tính y'(2).
Ta có: \(y' = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}}.\)
\( \Rightarrow \) Hệ số góc của tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {2;\,\,4} \right)\) là: \(y'\left( 2 \right) = \dfrac{{ - 3}}{{{{\left( {2 - 1} \right)}^2}}} = - 3.\)
Phương trình tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại điểm có hoành độ bằng 1 có dạng \(y=ax+b\), khi đó \(a+b\) bằng:
Đáp án
Đáp án
Bước 1: Tính $y'(1)$ và $y(1)$
TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có \(y = \dfrac{{x + 1}}{{x - 2}} \Rightarrow y' = \dfrac{{ - 3}}{{{{\left( {x - 2} \right)}^2}}}\) \( \Rightarrow y'\left( 1 \right) = \dfrac{{ - 3}}{1} = - 3\).
Với \(x = 1 \Rightarrow y = \dfrac{{1 + 1}}{{1 - 2}} = - 2\).
Bước 2: Viết phương trình tiếp tuyến tại điểm có hoành độ bằng 1.
Suy ra phương trình tiếp tuyến cần tìm là \(y = - 3\left( {x - 1} \right) - 2 = - 3x + 1\).
\(a = - 3,\,\,b = 1 \Rightarrow a + b = - 2.\)
Cho hàm số \(y = {x^3} - 2x + 1\) có đồ thị \(\left( C \right)\). Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(M\left( { - 1;2} \right)\) bằng:
Đáp án:
Đáp án:
Ta có \(y = {x^3} - 2x + 1 \Rightarrow y' = 3{x^2} - 2\).
Vậy hệ số góc tiếp tuyến của đồ thị hàm số tại \(M\left( { - 1;2} \right)\) là \(k = y'\left( { - 1} \right) = 3{\left( { - 1} \right)^2} - 2 = 1\)
Hệ số góc của tiếp tuyến với đồ thị hàm số \(y = \dfrac{{5x - 1}}{{x + 1}}\) tại giao điểm với trục tung là
Đáp án:
Đáp án:
Bước 1: Tìm giao điểm của đồ thị hàm số với trục tung.
TXĐ : \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Giao điểm của đồ thị hàm số \(y = \dfrac{{5x - 1}}{{x + 1}}\) với trục tung có hoành độ là \(x = 0\).
Bước 2: Tìm hệ số góc của tiếp tuyến với đồ thị hàm số
Ta có: \(y = f\left( x \right) = \dfrac{{5x - 1}}{{x + 1}} \Rightarrow f'\left( x \right) = \dfrac{6}{{{{\left( {x + 1} \right)}^2}}}.\)
Do đó, hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 0 là \(f'\left( 0 \right) = \dfrac{6}{{{{\left( {0 + 1} \right)}^2}}} = 6\).
Có bao nhiêu tiếp tuyến của đồ thị hàm số \(y={{x}^{4}}-3{{x}^{2}}+1\) tại các điểm có tung độ bằng \(5\)?
Đáp án:
Đáp án:
Bước 1: Tham số hóa tiếp điểm có tung độ bằng 5 và lập phương trình liên quan đến tiếp điểm và đồ thị tìm tham số.
Gọi \(M\left( m;5 \right)\in \left( C \right)\) suy ra \({{m}^{4}}-3{{m}^{2}}+1=5\Leftrightarrow {{m}^{2}}=4\Leftrightarrow m=\pm \,2.\)
Bước 2: Thay tham số vào y' để tìm phương trình tiếp tuyến.
Ta có \({y}'=4{{x}^{3}}-6x\,\,\Rightarrow \,\,\left[ \begin{align} {y}'\left( 2 \right)=20 \\ {y}'\left( -\,2 \right)=-\,20 \\ \end{align} \right.\) suy ra phương trình tiếp tuyến cần tìm là \(\left[ \begin{align} y=20x-35 \\ y=-\,20x-35 \\ \end{align} \right..\)