Công thức tính diện tích toàn phần hình nón có bán kính đáy \(r\), độ dài đường cao \(h\) và độ dài đường sinh \(l\) là:
Công thức tính diện tích toàn phần hình nón có bán kính đáy \(r\) và độ dài đường sinh \(l\) là: \({S_{tp}} = \pi rl + \pi {r^2}\)
Cho hình nón có các kích thước \(r = 1cm;l = 2cm\) với \(r,l\) lần lượt là bán kính đáy và độ dài đường sinh hình nón. Diện tích toàn phần hình nón là:
Áp dụng công thức \({S_{tp}} = \pi rl + \pi {r^2}\) ta được: \({S_{tp}} = \pi rl + \pi {r^2} = \pi .1.2 + \pi {.1^2} = 3\pi \left( {c{m^2}} \right)\)
Cho hình nón có các kích thước \(r = 1;h = 2\) với \(r,h\) lần lượt là bán kính đáy và độ dài đường cao hình nón. Diện tích toàn phần hình nón là:
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow l = \sqrt {{r^2} + {h^2}} = \sqrt {{1^2} + {2^2}} = \sqrt 5 \)
Do đó \({S_{tp}} = \pi rl + \pi {r^2} = \pi .1.\sqrt 5 + \pi {.1^2} = \left( {1 + \sqrt 5 } \right)\pi \)
Công thức tính thể tích khối nón có bán kính đáy \(r\), độ dài đường sinh \(l\) và chiều cao \(h\) là:
Công thức tính thể tích khối nón: \(V = \dfrac{1}{3}\pi {r^2}h\)
Thể tích khối nón có bán kính đáy \(r\), độ dài đường sinh \(l\) là:
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow h = \sqrt {{l^2} - {r^2}} \)
Do đó \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {r^2}\sqrt {{l^2} - {r^2}} \)
Thể tích khối nón có bán kính đáy \(r = 2cm\) và \(h = 3cm\) là:
Áp dụng công thức tính thể tích khối nón \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.2^2}.3 = 4\pi c{m^3}\)
Công thức tính thể tích khối nón biết diện tích đáy \({S_d}\) và đường sinh \(l\) là:
Ta có: \({l^2} = {r^2} + {h^2} \Rightarrow h = \sqrt {{l^2} - {r^2}} \Rightarrow V = \dfrac{1}{3}{S_d}.h = \dfrac{1}{3}{S_d}.\sqrt {{l^2} - {r^2}} \)
Cho tam giác $ABO$ vuông tại $O$, có góc \(\widehat {BAO} = {30^0},AB = a\) . Quay tam giác $ABO$ quanh trục $AO$ ta được một hình nón có diện tích xung quanh bằng:
Hình nón thu được có đường sinh $l = AB = a$; bán kính đáy
$r = OB = AB.\sin 30^\circ = \dfrac{a}{2}$ và diện tích xung quanh là
${S_{xq}} = \pi rl = \dfrac{{\pi {a^2}}}{2}$
Một hình nón tròn xoay có đường sinh bằng đường kính đáy. Diện tích đáy của hình nón bằng $9\pi $. Khi đó chiều cao $h$ của hình nón bằng:
$r = \sqrt {\dfrac{{9\pi }}{\pi }} = 3 \Rightarrow l = 2r = 6;h = \sqrt {{l^2} - {r^2}} = 3\sqrt 3 $
Hình nón có thiết diện qua trục là tam giác đều cạnh \(a = 3\). Tính độ dài đường cao của hình nón.
Độ dài đường cao của hình nón cũng chính là chiều cao của tam giác đều \( \Rightarrow h = \dfrac{{a\sqrt 3 }}{2} = \dfrac{{3\sqrt 3 }}{2}\)
Một hình nón có bán kính đáy bằng $1$, chiều cao nón bằng $2$. Khi đó góc ở đỉnh của nón là $2\varphi $ thỏa mãn
Giả sử thiết diện qua trục của hình nón đã cho là $\Delta ABC$ cân tại $A$ với $A$ là đỉnh nón, $BC$ là đường kính đáy của nón.
Gọi $H$ là tâm đáy nón $ \Rightarrow H$ là trung điểm $BC,AH \bot BC$
Ta có $HB = HC = 1,AH = 2$ . Ta có
$\begin{array}{l}2\varphi = \angle BAC \Rightarrow \varphi = \angle HAC\\AC = \sqrt {A{H^2} + H{C^2}} = \sqrt 5 \\\cos \varphi = \dfrac{{AH}}{{AC}} = \dfrac{2}{{\sqrt 5 }} = \dfrac{{2\sqrt 5 }}{5}\end{array}$
Người ta đặt được vào một hình nón hai khối cầu có bán kính lần lượt là $a$ và $2a$ sao cho các khối cầu đều tiếp xúc với mặt xung quanh của hình nón, hai khối cầu tiếp xúc với nhau và khối cầu lớn tiếp xúc với đáy của hình nón. Bán kính đáy của hình nón đã cho là:
Giả sử thiết diện qua trục của hình nón là $\Delta ABC$ với $A$ là đỉnh nón, $BC$ là đường kính đáy nón.
Gọi $H$ là tâm đường tròn đáy của hình nón, ${O_1},{O_2}$ lần lượt là tâm của mặt cầu lớn và nhỏ, ${D_1},{D_2}$ lần lượt là tiếp điểm của $AC$ với $\left( {{O_1}} \right)$ và $\left( {{O_2}} \right)$.
Vì ${O_1}{D_1}//{O_2}{D_2}$ (cùng vuông góc với $AC$) nên theo hệ thức Ta – let ta có:
\( \Rightarrow \dfrac{{A{O_2}}}{{A{O_1}}} = \dfrac{{{O_2}{D_2}}}{{{O_1}{D_1}}} = \dfrac{a}{{2a}} = \dfrac{1}{2} \)
\(\Rightarrow {O_2}\) là trung điểm của \(A{O_1}\)\( \Rightarrow A{O_1} = 2{O_1}{O_2} = 2\left( {a + 2a} \right) = 6a\)
\( \Rightarrow AH = A{O_1} + {O_1}H = 6a + 2a = 8a\)
Xét tam giác vuông \(A{O_1}{D_1}\) có: \(A{D_1} = \sqrt {A{O_1}^2 - {O_1}{D_1}^2} = \sqrt {36{a^2} - 4{a^2}} = 4\sqrt 2 a\)
Dễ thấy:
$\Delta A{O_1}{D_1} \backsim \Delta ACH\,\,\left( {g.g} \right)$$ \Rightarrow \dfrac{{HC}}{{{O_1}{D_1}}} = \dfrac{{AH}}{{A{D_1}}}$$ \Rightarrow HC = \dfrac{{{O_1}{D_1}.AH}}{{A{D_1}}} = \dfrac{{2a.8a}}{{4\sqrt 2 a}} = 2\sqrt 2 a = r$
Cho hình nón có diện tích xung quanh bằng \(3\pi {a^2}\) và bán kính đáy bằng \(a\). Tính độ dài đường sinh \(l\) của hình nón đã cho.
Ta có: \({S_{xq}} = \pi rl = 3\pi {a^2} = \pi al \Rightarrow l = 3a\)
Cho mặt cầu tâm \(O\) bán kính \(R\). Xét mặt phẳng \(\left( P \right)\) thay đổi cắt mặt cầu theo giao tuyến là đường tròn \(\left( C \right)\). Hình nón \(N\) có đỉnh \(S\) nằm trên mặt cầu, có đáy là đường tròn \(\left( C \right)\) và có chiều cao \(h\left( {h > R} \right)\). Tìm \(h\) để thể tích khối nón được tạo nên bởi \(\left( N \right)\) có giá trị lớn nhất.
Ta có: Gọi bán kính $\left( C \right)$ với tâm là $I$ là $r$ thì dễ có $S$ phải thuộc $OI$ và :
$\begin{array}{l}OI = \sqrt {{R^2} - {r^2}} \to h = \sqrt {{R^2} - {r^2}} + R\\V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {r^2}(\sqrt {{R^2} - {r^2}} + R)\end{array}$
Tới đây ta sẽ khảo sát hàm số:
\(\begin{array}{l}
f\left( r \right) = {r^2}\left( {\sqrt {{R^2} - {r^2}} + R} \right)\\
= {r^2}\sqrt {{R^2} - {r^2}} + {r^2}R\\
\Rightarrow f'\left( r \right) = \left( {{r^2}\sqrt {{R^2} - {r^2}} + {r^2}R} \right)'\\
= \left( {{r^2}\sqrt {{R^2} - {r^2}} } \right)' + \left( {{r^2}R} \right)'\\
= \left( {{r^2}} \right)'\sqrt {{R^2} - {r^2}} + {r^2}\left( {\sqrt {{R^2} - {r^2}} } \right)' + 2rR\\
= 2r\sqrt {{R^2} - {r^2}} + {r^2}.\frac{{ - 2r}}{{2\sqrt {{R^2} - {r^2}} }} + 2rR\\
= 2r\sqrt {{R^2} - {r^2}} - \frac{{{r^3}}}{{\sqrt {{R^2} - {r^2}} }} + 2rR\\
= r\left( {2\sqrt {{R^2} - {r^2}} - \frac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} + 2R} \right)
\end{array}\)
$f'(r) = 0 \Leftrightarrow 2\sqrt {{R^2} - {r^2}} + 2{\rm{R}} - \dfrac{{{r^2}}}{{\sqrt {{R^2} - {r^2}} }} = 0 \Leftrightarrow 2({R^2} - {r^2}) - {r^2} + 2{\rm{R}}\sqrt {{R^2} - {r^2}} = 0$
$ \Leftrightarrow {(2{{\rm{R}}^2} - 3{{\rm{r}}^2})^2} = {(2{\rm{R}}\sqrt {{R^2} - {r^2}} )^2}$
$\Leftrightarrow {r^2} = \dfrac{8}{9}{R^2} \to h = \dfrac{{4{\rm{R}}}}{3}.$
Cho hình nón đỉnh $S$, tâm đáy là $O$, góc ở đỉnh là ${135^0}$. Trên đường tròn đáy lấy điểm $A$ cố định và điểm $M$ di động. Tìm số vị trí $M$ để diện tích $SAM$ đạt giá trị lớn nhất
Ta có:
\(\begin{array}{l}{S_{SAM}} = \dfrac{1}{2}SA.SM\sin \widehat {ASM}\\ = \dfrac{1}{2}S{A^2}\sin \widehat {ASM} \le \dfrac{1}{2}S{A^2}\\ \Rightarrow \max {S_{SAM}} = \dfrac{1}{2}S{A^2}\end{array}\)
Dấu “=” xảy ra khi \(\sin \widehat {ASM} = 1 \Leftrightarrow \widehat {ASM} = {90^0}\).
Có $2$ điểm $M$ như vậy (hai điểm đối xứng với nhau qua $AB$).
Một que kem ốc quế gồm hai phần: phần kem có dạng hình cầu, phần ốc quế có dạng hình nón. Giả sử hình cầu và hình nón có bán kính bằng nhau; biết rằng nếu kem tan chảy hết thì sẽ làm đầy phần ốc quế. Biết thể tích phần kem sau khi tan chảy chỉ bằng $75\% $ thể tích kem đóng băng ban đầu. Gọi $h$ và $r$ lần lượt là chiều cao và bán kính của phần ốc quế. Tính tỉ số \(\dfrac{h}{r}\).
Theo đầu bài ta có bán kính của khối cầu và khối nón đều bằng $r$.
Từ dữ kiện đầu bài ta suy ra : \({V_{non}} = \dfrac{3}{4}.{V_{cau}} \Leftrightarrow \dfrac{1}{3}\pi {r^2}h = \dfrac{3}{4}.\dfrac{4}{3}\pi {r^3} \Leftrightarrow \dfrac{h}{r} = 3\)
Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\); tứ giác \(ABCD\) là hình thang vuông với cạnh đáy \(AD,BC\); \(AD = 3BC = 3a,\,\,AB = a,SA = a\sqrt 3 \). Điểm \(I\) thỏa mãn \(\overrightarrow {AD} = 3\overrightarrow {AI} \); \(M\) là trung điểm \(SD\), \(H\) là giao điểm của \(AM\) và \(SI\). Gọi \(E\), \(F\) lần lượt là hình chiếu của \(A\) lên \(SB\), \(SC.\) Tính thể tích \(V\) của khối nón có đáy là đường tròn ngoại tiếp tam giác \(EFH\) và đỉnh thuộc mặt phẳng\(\left( {ABCD} \right)\).
Xét tam giác \(SAD\) vuông tại \(A\) có \(SA = a\sqrt 3 ,AD = 3a \Rightarrow \widehat {SDA} = {30^0}\) \( \Rightarrow \widehat {MAI} = {30^0}\).
Lại có tam giác \(SAI\) vuông tại \(A\) có \(SA = a\sqrt 3 ,AI = a \Rightarrow \widehat {SIA} = {60^0}\) nên tam giác \(AHI\) có \(\widehat H = {90^0}\) hay \(AH \bot SI\)
Mà \(AH \bot IC\) do \(IC//BA \bot \left( {SAD} \right)\) nên \(AH \bot \left( {SIC} \right)\) \( \Rightarrow AH \bot SC\).
Ngoài ra, \(AE \bot SB,AE \bot BC\left( {BC \bot \left( {SAB} \right)} \right) \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow AE \bot SC\).
Mà \(AF \bot SC\) nên \(SC \bot \left( {AEFH} \right)\) và \(AEFH\) là tứ giác có \(\widehat E = \widehat H = {90^0}\) nên nội tiếp đường tròn tâm \(K\) là trung điểm \(AF\) đường kính \(AF\).
Gọi \(O\) là trung điểm \(AC\) thì \(OK//SC\), mà \(SC \bot \left( {AEFH} \right)\) nên \(OK \bot \left( {AEFH} \right)\) hay \(O\) chính là đỉnh hình nón và đường tròn đáy là đường tròn đường kính \(AF\).
Ta tính \(AF,OK\).
Xét tam giác \(SAC\) vuông tại \(A\) đường cao \(AF\) nên \(AF = \dfrac{{SA.AC}}{{SC}} = \dfrac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \dfrac{{a\sqrt 6 }}{{\sqrt 5 }}\).; \(OK = \dfrac{1}{2}CF = \dfrac{1}{2}.\dfrac{{C{A^2}}}{{CS}} = \dfrac{a}{{\sqrt 5 }}\).
Vậy thể tích \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .\dfrac{a}{{\sqrt 5 }}.{\left( {\dfrac{1}{2}.\dfrac{{a\sqrt 6 }}{{\sqrt 5 }}} \right)^2} = \dfrac{{\pi {a^3}}}{{10\sqrt 5 }}\).
Cho hình vuông \(ABCD\) cạnh bằng \(2\). Gọi \(M\) là trung điểm \(AB\). Cho tứ giác \(AMCD\) và các điểm trong của nó quay quanh trục \(AD\) ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Kéo dài \(CM\) cắt \(DA\) tại \(E\). Quay hình thang vuông \(AMCD\) quanh trục \(AD\) ta được hình nón cụt như hình vẽ.
Quay tam giác \(EDC\) quanh trục \(ED\) ta được hình nón.
Dễ thấy \({V_{nc}} = {V_1} - {V_2}\), ở đó \({V_1}\) là thể tích khối nón đỉnh \(E\), bán kính đáy \(DC = 2\) và \({V_2}\) là thể tích khối nón đỉnh \(E\), bán kính đáy \(AM = 1\).
Có \(\dfrac{{EA}}{{ED}} = \dfrac{{AM}}{{DC}} = \dfrac{1}{2} \Rightarrow EA = AD = 2 \Rightarrow ED = 4\)
\( \Rightarrow {V_1} = \dfrac{1}{3}\pi D{C^2}.ED = \dfrac{1}{3}\pi {.2^2}.4 = \dfrac{{16\pi }}{3}\) ;
\({V_2} = \dfrac{1}{3}\pi A{M^2}EA = \dfrac{1}{3}\pi {.1^2}.2 = \dfrac{{2\pi }}{3}\).
Vậy \(V = {V_1} - {V_2} = \dfrac{{16\pi }}{3} - \dfrac{{2\pi }}{3} = \dfrac{{14\pi }}{3}\).
Một hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng \(a.\) Diện tích xung quanh của hình nón bằng:
Thiết diện qua trục của hình nón là \(\Delta SAB\) vuông cân tại \(S\) và có \(SA = SB = a.\)
\( \Rightarrow l = SA = a.\)
Ta có:\(\Delta SAB\) vuông cân tại \(S\) \( \Rightarrow AB = SA\sqrt 2 = a\sqrt 2 \)
\( \Rightarrow r = OA = \dfrac{1}{2}AB = \dfrac{{a\sqrt 2 }}{2}.\)
\( \Rightarrow \) Diện tích xung quanh của hình nón đã cho là:\({S_{xq}} = \pi rl = \pi .\dfrac{{a\sqrt 2 }}{2}.a = \dfrac{{\pi {a^2}\sqrt 2 }}{2}.\)
Cho hình nón có góc ở đỉnh bằng \({120^0}\) và đường cao bằng \(2.\) Tính diện tích xung quanh của hình nón đã cho.
Gọi \(S\) là đỉnh hình nón, \(AB\) là 1 đường kính của hình nón và \(O\) là tâm đường tròn đáy của hình nón.
Khi đó ta có \(\angle ASB = {120^0}\) và \(h = SO = 2\).
Ta có: \(\Delta SAB\) cân tại \(S\) suy ra \(SO\) là phân giác của \(\angle ASB\) \( \Rightarrow \angle ASO = \dfrac{1}{2}\angle ASB = {60^0}\).
Xét tam giác vuông \(SOA\) có: \(r = OA = SO.\tan {60^0} = 2\sqrt 3 \), \(l = SA = \dfrac{{SO}}{{\cos {{60}^0}}} = 4\).
Vậy diện tích xung quanh của hình nón là: \({S_{xq}} = \pi rl = \pi .2\sqrt 3 .4 = 8\sqrt 3 \pi \).