Cho \(\Delta ABC\) vuông tại $A,$ có \(\widehat C = {30^0}\), đường trung trực của $BC$ cắt $AC$ tại $M.$ Em hãy chọn câu đúng:
Vì $M$ thuộc đường trung trực của $BC$ \( \Rightarrow BM = MC\) (tính chất điểm thuộc đường trung trực của đoạn thẳng)
\( \Rightarrow \Delta BMC\) cân tại $M$ (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow \widehat {MBC} = \widehat C = {30^0}\) (tính chất tam giác cân)
Xét \(\Delta ABC\) có: \(\widehat A + \widehat {ABC} + \widehat C = {180^0}\) (định lý tổng 3 góc trong tam giác)
\( \Rightarrow \widehat {ABC} = {180^0} - \widehat C - \widehat A = {180^0} - {30^0} - {90^0} = {60^0}\)
\( \Rightarrow \widehat {ABM} + \widehat {MBC} = \widehat {ABC} = {60^0} \Rightarrow \widehat {ABM} = {60^0} - \widehat {MBC} = {60^0} - {30^0} = {30^0}\)
\( \Rightarrow \widehat {ABM} = \widehat {MBC} \Rightarrow \) $BM$ là phân giác của \(\widehat {ABC}\).
Cho \(\Delta ABC\), hai đường cao $BD$ và $CE.$ Gọi $M$ là trung điểm của $BC.$ Em hãy chọn câu sai:
Vì $M$ là trung điểm của $BC$ (gt) suy ra $BM = MC$ (tính chất trung điểm), loại đáp án A.
Xét \({\Delta _v}BCE\)có $M$ là trung điểm của $BC$ (gt) suy ra $EM$ là trung tuyến.
\( \Rightarrow EM = \dfrac{{BC}}{2}\left( 1 \right)\) (trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy)
Xét \({\Delta _v}BCD\)có $M$ là trung điểm của $BC\left( {gt} \right)$ suy ra $DM$ là trung tuyến.
\( \Rightarrow DM = MB = \dfrac{{BC}}{2}\left( 2 \right)\) (trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy) nên loại đáp án C.
Từ (1) và (2) \( \Rightarrow EM = DM \Rightarrow \) M thuộc đường trung trực của DE. Loại đáp án B, chọn đáp án D.
Cho tam giác \(ABC\) có \(AC > AB.\) Trên cạnh \(AC\) lấy điểm \(E\) sao cho \(CE = AB.\) Các đường trung trực của \(BE\) và \(AC\) cắt nhau tại \(O.\)
Chọn câu đúng.
Xét tam giác \(AOB\) và \(COE\) có
+ \(OA = OC\) (vì $O$ thuộc đường trung trực của \(AC\))
+ \(OB = OE\) (vì $O$ thuộc đường trung trực của \(BE\))
+ \(AB = CE\) (giả thiết)
Do đó \(\Delta AOB = \Delta COE\left( {c - c - c} \right)\)
Cho tam giác \(ABC\) có \(AC > AB.\) Trên cạnh \(AC\) lấy điểm \(E\) sao cho \(CE = AB.\) Các đường trung trực của \(BE\) và \(AC\) cắt nhau tại \(O.\)
Chọn câu đúng
Ta có \(\Delta AOB = \Delta COE \Rightarrow \widehat {OAB} = \widehat {OCE}\,\,\left( 1 \right)\)
\(\Delta AOC\) cân tại \(O \Rightarrow \widehat {OAC} = \widehat {OCE}\,\,\left( 2 \right)\)
Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(\widehat {OAB} = \widehat {OAC}\) , do đó \(AO\) là tia phân giác góc \(A.\)
Cho tam giác \(ABC\) trong đó \(\widehat A = 100^\circ \). Các đường trung trực của \(AB\) và \(AC\) cắt cạnh \(BC\) theo thứ tự ở \(E\) và \(F\) . Tính \(\widehat {EAF}.\)
Ta có \(EA = EB\) nên \(\widehat {{A_1}} = \widehat B\) , \(FA = FC\) nên \(\widehat {{A_3}} = \widehat C\). Do đó \(\widehat {{A_1}} + \widehat {{A_3}} = \widehat B + \widehat C = 180^\circ - 100^\circ = 80^\circ \)
Suy ra \(\widehat {{A_2}} = 100^\circ - 80^\circ = 20^\circ .\)
Cho tam giác $ABC$ vuông tại $A,$ kẻ đường cao $AH.$ Trên cạnh $AC$ lấy điểm $K$ sao cho $AK = AH.$ Kẻ \(KD \bot AC\left( {D \in BC} \right)\). Chọn câu đúng.
Xét tam giác vuông \(AHD\) và tam giác vuông \(AKD\) có
+ \(AH = AK\,\left( {gt} \right)\)
+ \(AD\) chung
Suy ra \(\Delta AHD = \Delta AKD\left( {ch - cgv} \right)\) nên A đúng
Từ đó ta có \(HD = DK;\,\widehat {HAD} = \widehat {DAK}\) suy ra \(AD\) là tia phân giác góc \(HAK\) nên C đúng.
Ta có \(AH = AK\left( {gt} \right)\) và \(HA = DK\left( {cmt} \right)\) suy ra \(AD\) là đường trung trực đoạn \(HK\) nên B đúng.
Vậy cả A, B, C đều đúng.
Cho \(\Delta ABC\) nhọn, đường cao $AH.$ Lấy điểm $D$ sao cho $AB$ là trung trực của $HD.$ Lấy điểm $E$ sao cho $AC$ là trung trực của $HE.$ Gọi $M$ là giao điểm của $DE$ với $AB,N$ là giao điểm của $DE$ với $AC.$ Chọn câu đúng.
Vì $AB$ là đường trung trực của $HD$ (gt) \( \Rightarrow AD = AH\) (tính chất trung trực của đoạn thẳng)
Vì $AC$ là đường trung trực của $HE$ (gt) \( \Rightarrow AH = AE\) (tính chất trung trực của đoạn thẳng)
\( \Rightarrow AD = AE \Rightarrow \Delta ADE\) cân tại $A.$ Nên A đúng.
+) $M$ nằm trên đường trung trực của $HD$ nên $MD = MH$ (tính chất trung trực của đoạn thẳng)
Xét \(\Delta AMD\) và \(\Delta AMH\) có:
\(\)$AM$ chung.
$AD = AH$ (cmt)
$MD = MH$ (cmt)
\( \Rightarrow \Delta AMD = \Delta AMH\left( {c - c - c} \right) \Rightarrow \widehat {MDA} = \widehat {MHA}\) (2 góc tương ứng)
Lại có, $N$ thuộc đường trung trực của $HE$ nên $NH = NE$ (tính chất trung trực của đoạn thẳng).
+) Xét \(\Delta AHN\) và \(\Delta AEN\) có:
$AN$ chung
$AH = AE$ (cmt)
$NH = NE$ (cmt)
\( \Rightarrow \Delta AHN = \Delta AEN\left( {c - c - c} \right) \Rightarrow \widehat {NHA} = \widehat {NEA}\) (2 góc tương ứng)
Mà \(\Delta ADE\) cân tại $A$ (cmt) \( \Rightarrow \widehat {MDA} = \widehat {NEA} \Rightarrow \widehat {MHA} = \widehat {NHA}\) . Vậy $HA$ là đường phân giác của \(\widehat {MHN}\) .
Cho tam giác \(ABC\) có \(\widehat A\) là góc tù. Tia phân giác của góc \(B\) và góc \(C\) cắt nhau tại \(O.\) Lấy điểm \(E\) trên cạnh \(AB.\) Từ \(E\) kẻ \(EP \bot BO\,\,\left( {P \in BC} \right).\) Từ \(P\) kẻ \(PF \bot OC\,\left( {F \in AC} \right).\)
Chọn câu đúng.
Giả sử \(EP \bot BO\) tại \(M\); \(PF \bot OC\) tại \(N\).
Khi đó \(\widehat {BME} = \widehat {BMP} = {90^0}\); \(\widehat {CNF} = \widehat {PNC} = {90^0}\)
Vì \(BO\) là tia phân giác của \(\widehat {ABC}\) (gt) nên \(\widehat {{B_1}} = \widehat {{B_2}}\) (tính chất tia phân giác)
Xét \(\Delta BME\) và \(\Delta BMP\) có:
\(\widehat {BME} = \widehat {BMP} = {90^0}\) (cmt)
\(BM\) là cạnh chung
\(\widehat {{B_1}} = \widehat {{B_2}}\) (cmt)
Do đó \(\Delta BME = \Delta BMP\) (g.c.g) suy ra \(ME = MP\) (hai cạnh tương ứng)
Mặt khác: \(EP \bot BO\) (gt)
Vậy \(OB\) là đường trung trực của đoạn \(EP\) (định nghĩa đường trung trực của đoạn thẳng). Đáp án A đúng.
Chứng minh tương tự ta có: \(\Delta CNF = \Delta CNP\) (g.c.g) suy ra \(NF = NP\) (hai cạnh tương ứng)
Mặt khác \(PF \bot OC\) (gt)
Vậy \(OC\) là đường trung trực của đoạn \(PF\) (định nghĩa đường trung trực của đoạn thẳng). Đáp án B đúng
Cho tam giác \(ABC\) có \(\widehat A\) là góc tù. Tia phân giác của góc \(B\) và góc \(C\) cắt nhau tại \(O.\) Lấy điểm \(E\) trên cạnh \(AB.\) Từ \(E\) kẻ \(EP \bot BO\,\,\left( {P \in BC} \right).\) Từ \(P\) kẻ \(PF \bot OC\,\left( {F \in AC} \right).\)
So sánh \(BE + CF\) và \(BC.\)
Theo câu trước ta có: \(\Delta BME = \Delta BMP\) (g.c.g) suy ra \(BE = BP\) (hai cạnh tương ứng)
Theo câu trước ta có: \(\Delta CNF = \Delta CNP\) (g.c.g) suy ra \(CF = CP\) (hai cạnh tương ứng)
Khi đó \(BE + CF = BP + CP = BC\).
Cho \(\Delta ABC\) có: \(\widehat A = {140^0}.\) Các đường trung trực của các cạnh \(AB\) và \(AC\) cắt nhau tại \(I.\) Tính số đo góc \(BIC.\)
Vì \(\Delta ABC\) có các đường trung trực của các cạnh \(AB\) và \(AC\) cắt nhau tại \(I\) nên \(IA = IB = IC\) (tính chất ba đường trung trực của tam giác).
Xét \(\Delta IAB\) có: \(IA = IB\) (cmt) \( \Rightarrow \Delta IAB\) cân tại \(I\) (dấu hiệu nhận biết tam giác cân) \( \Rightarrow \widehat {IAB} = \widehat {IBA}\) (tính chất tam giác cân).
Xét \(\Delta IAC\) có: \(IA = IC\) (cmt) \( \Rightarrow \Delta IAC\) cân tại \(I\) (dấu hiệu nhận biết tam giác cân) \( \Rightarrow \widehat {IAC} = \widehat {ICA}\) (tính chất tam giác cân).
Trong \(\Delta IAB\) có: \(\widehat {BIA} + \widehat {IAB} + \widehat {IBA} = {180^0}\) (định lí tổng ba góc của một tam giác)
Mà \(\widehat {IAB} = \widehat {IBA}(cmt)\) suy ra \(\widehat {BIA} = {180^0} - (\widehat {IAB} + \widehat {IBA}) = {180^0} - 2.\widehat {IAB}\)
Trong \(\Delta IAC\) có: \(\widehat {AIC} + \widehat {IAC} + \widehat {ICA} = {180^0}\) (định lí tổng ba góc của một tam giác)
Mà \(\widehat {IAC} = \widehat {ICA}(cmt)\) suy ra \(\widehat {AIC} = {180^0} - (\widehat {IAC} + \widehat {ICA}) = {180^0} - 2.\widehat {IAC}\)
Khi đó \(\widehat {BIC} = \widehat {BIA} + \widehat {AIC} = {180^0} - 2.\widehat {IAB} + {180^0} - 2.\widehat {IAC}\)
\( = {360^0} - 2.(\widehat {IAB} + \widehat {IAC}) = {360^0} - 2.\widehat {BAC} = {360^0} - {2.140^0} = {80^0}\).