Hàm số logarit

Câu 81 Trắc nghiệm

Đồ thị của hàm số \(y = f\left( x \right)\)  đối xứng với đồ thị của hàm số \(y = {a^x}\,\,\left( {a > 0,\,\,a \ne 1} \right)\) qua điểm \(M\left( {1;1} \right)\). Giá trị của hàm số \(y = f\left( x \right)\) tại \(x = 2 + {\log _a}\dfrac{1}{{2020}}\) bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Lấy điểm \(A\left( {{x_0};{a^{{x_0}}}} \right) \in \left( {{C_1}} \right)\) (đồ thị của hàm số \(y = {a^x}\). Gọi B là điểm đối xứng của A qua M(1;1).

\( \Rightarrow \left\{ \begin{array}{l}{x_B} = 2{x_M} - {x_A} = 2 - {x_0}\\{y_B} = 2{y_M} - {y_A} = 2 - {a^{{x_0}}}\end{array} \right.\)\( \Rightarrow {x_0} = 2 - {x_B} \Rightarrow {y_B} = 2 - {a^{2 - {x_B}}}\)

\( \Rightarrow \) Hàm số \(y = f\left( x \right) = 2 - {a^{2 - x}}\)

\( \Rightarrow f\left( {2 + {{\log }_a}\dfrac{1}{{2020}}} \right) = 2 - {a^{2 - \left( {2 + {{\log }_a}\dfrac{1}{{2020}}} \right)}}\)\( = 2 - {a^{{{\log }_a}20220}} = 2 - 2020 =  - 2018\).

Câu 82 Trắc nghiệm

Cho \(a\) và \(b\) là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \(y = {\log _a}x,\,\,y = {\log _b}x\) và trục hoành lần lượt tại \(A,\,\,B\) và \(H\) phân biệt ta đều có \(3HA = 4HB\) (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi \(H\left( {{x_0};0} \right)\,\,\left( {{x_0} > 1} \right)\) ta có: \(A\left( {{x_0};{{\log }_a}{x_0}} \right);\,\,B\left( {{x_0};{{\log }_b}{x_0}} \right)\).

\( \Rightarrow HA = {\log _a}{x_0}\); \(HB =  - {\log _b}{x_0}\) (do \({\log _a}{x_0} > 0,\,\,{\log _b}{x_0} < 0\)).

Theo bài ra ta có: \(3HA = 4HB\)\( \Leftrightarrow 3{\log _a}{x_0} =  - 4{\log _b}{x_0}\).

\(\begin{array}{l} \Leftrightarrow 3{\log _a}{x_0} + 4{\log _b}{x_0} = 0\\ \Leftrightarrow \dfrac{3}{{{{\log }_{{x_0}}}a}} + \dfrac{4}{{{{\log }_{{x_0}}}b}} = 0\\ \Leftrightarrow \dfrac{{3{{\log }_{{x_0}}}b + 4{{\log }_{{x_0}}}a}}{{{{\log }_{{x_0}}}b.{{\log }_{{x_0}}}a}} = 0\\ \Leftrightarrow {\log _{{x_0}}}{b^3} + {\log _{{x_0}}}{a^4} = 0\\ \Leftrightarrow {\log _{{x_0}}}{a^4}{b^3} = 0\\ \Leftrightarrow {a^4}{b^3} = 1\end{array}\)

Câu 83 Trắc nghiệm

Cho hàm số \(f\left( x \right) = \ln \left( {{e^x} + m} \right)\) có \(f'\left( { - \ln 2} \right) = \frac{3}{2}.\) Mệnh đề nào dưới đây đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:  \(f\left( x \right) = \ln \left( {{e^x} + m} \right)\)

Điều kiện: \({e^x} + m > 0.\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) = \frac{{{e^x}}}{{{e^x} + m}}\\ \Rightarrow f'\left( { - \ln 2} \right) = \frac{3}{2} \Leftrightarrow \frac{{{e^{ - \ln 2}}}}{{{e^{ - \ln 2}} + m}} = \frac{3}{2}\\ \Leftrightarrow 2.{e^{ - \ln 2}} = 3.{e^{ - \ln 2}} + 3m\\ \Leftrightarrow {2.2^{ - \ln e}} = {3.2^{ - \ln e}} + 3m\\ \Leftrightarrow 2.\frac{1}{2} - 3.\frac{1}{2} = 3m\\ \Leftrightarrow m =  - \dfrac{1}{6}.\\ \Rightarrow m \in \left( { - 2;\,\,0} \right).\end{array}\)

Câu 84 Trắc nghiệm

Xét các số thực \(a\), \(b\) thỏa mãn \(a > b > 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\left( {\dfrac{a}{b}} \right)\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\dfrac{a}{b}\)

\( \Leftrightarrow P = 4\log _{\frac{a}{b}}^2a + 3\left( {{{\log }_b}a - 1} \right)\)\( \Leftrightarrow P = \dfrac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + 3\left( {\dfrac{1}{{{{\log }_a}b}} - 1} \right)\) 

Đặt \({\log _a}b = t \Rightarrow 0 < t < 1\) . Khi đó \(P = \dfrac{4}{{{{\left( {t - 1} \right)}^2}}} + \dfrac{3}{t} - 3\)

\(P' = \dfrac{{ - 8}}{{{{\left( {t - 1} \right)}^3}}} - \dfrac{3}{{{t^2}}} = 0\) \( \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0\)  \( \Rightarrow t = \dfrac{1}{3}\)

\( \Rightarrow {P_{\min }} = 15\).

Câu 85 Trắc nghiệm

Cho hai hàm số \(y = \ln \left| {\dfrac{{x - 2}}{x}} \right|\) và \(y = \dfrac{3}{{x - 2}} - \dfrac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

ĐKXĐ: \(x \ne 0,\,\,x \ne 2\).

Xét phương trình hoành độ giao điểm:

\(\begin{array}{l}\ln \left| {\dfrac{{x - 2}}{x}} \right| = \dfrac{3}{{x - 2}} - \dfrac{1}{x} + 4m - 2020\\ \Leftrightarrow \ln \left| {\dfrac{{x - 2}}{x}} \right| - \dfrac{3}{{x - 2}} + \dfrac{1}{x} = 4m - 2020\end{array}\)

Đặt \(f\left( x \right) = \ln \left| {\dfrac{{x - 2}}{x}} \right| - \dfrac{3}{{x - 2}} + \dfrac{1}{x}\) ta có:

\(\begin{array}{l}f'\left( x \right) = \dfrac{2}{{{x^2}}}:\dfrac{{x - 2}}{x} + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}} - \dfrac{1}{{{x^2}}}\\f'\left( x \right) = \dfrac{2}{{x\left( {x - 2} \right)}} + \dfrac{3}{{{{\left( {x - 2} \right)}^2}}} - \dfrac{1}{{{x^2}}}\\f'\left( x \right) = \dfrac{{2x\left( {x - 2} \right) + 3{x^2} - {{\left( {x - 2} \right)}^2}}}{{{x^2}{{\left( {x - 2} \right)}^2}}}\\f'\left( x \right) = \dfrac{{2{x^2} - 4x + 3{x^2} - {x^2} + 4x - 4}}{{{x^2}{{\left( {x - 2} \right)}^2}}}\\f'\left( x \right) = \dfrac{{4{x^2} - 4}}{{{x^2}{{\left( {x - 2} \right)}^2}}} = 0 \Leftrightarrow x =  \pm 1\end{array}\)

BBT:

Dựa vào BBT ta thấy để phương trình có nghiệm duy nhất thì \(\left[ \begin{array}{l}4m - 2020 = 0\\4m - 2020 = \ln 3\\4m - 2020 = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 505\\m = \dfrac{{2020 + \ln 3}}{4} \notin \mathbb{Z}\,\,\left( {ktm} \right)\\m = 506\end{array} \right.\).

Vậy tổng các giá trị của \(m\) thỏa mãn yêu cầu bài toán là: \(505 + 506 = 1011\).

Câu 86 Trắc nghiệm

Cho $x, y$ là các số thực thỏa mãn \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của biểu thức \(P = 2x - y\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điều kiện : $x + y >0, x – y > 0$

\({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1 \Leftrightarrow {\log _4}\left( {{x^2} - {y^2}} \right) \ge 1 \Leftrightarrow {x^2} - {y^2} \ge 4\)

Ta có: $P = 2x - y = \dfrac{{x + y + 3(x - y)}}{2} \ge \sqrt {(x + y).3(x - y)}  = \sqrt {3({x^2} - {y^2})}  = \sqrt {3.4}  = 2\sqrt 3 $

Dấu “=” xảy ra khi:

\(\left\{ \begin{array}{l}x + y = 3\left( {x - y} \right)\\{x^2} - {y^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 3\left( {x - y} \right)\\3{\left( {x - y} \right)^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = \dfrac{2}{{\sqrt 3 }}\\x + y = 2\sqrt 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{{\sqrt 3 }} + \sqrt 3 \\y = \sqrt 3  - \dfrac{1}{{\sqrt 3 }}\end{array} \right.\)

Vậy   $Min\,P = 2\sqrt 3 $.

 

Câu 87 Trắc nghiệm

Trên khoảng \((0; + \infty )\), đạo hàm của hàm số \(y = {\log _2}x\) là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Đạo hàm của hàm số \(y = {\log _2}x\) trên khoảng \((0; + \infty )\) là \({y^\prime } = \dfrac{1}{{x\ln 2}}\)