Ứng dụng tích phân trong hình học (thể tích vật thể)

Câu 61 Trắc nghiệm

Gọi \(\left( {{D_1}} \right)\) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,\,\,y = 0\)  và \(x = 2020,\) \(\left( {{D_2}} \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt {3 x},\,\,y = 0\) và \(x = 2020.\) Gọi \({V_1},\,\,{V_2}\) lần lượt là thể tích khối tròn xoay tạo thành khi quay \(\left( {{D_1}} \right)\)  và \(\left( {{D_2}} \right)\) xung quanh trục \(Ox.\) Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có: \(\left( {{D_1}} \right)\) là hình phẳng giới hạn bởi các đường \(y = 2\sqrt x ,\,\,y = 0\)  và \(x = 2020,\)

\( \Rightarrow {V_1} = \pi \int\limits_0^{2020} {\left| {{{\left( {2\sqrt x } \right)}^2}} \right|dx} \) \( = \pi \int\limits_0^{2020} {4xdx}  = \left. {2\pi {x^2}} \right|_0^{2020}\) \( = 2\pi {.2020^2}.\)

\(\left( {{D_2}} \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt {3x} ,\,\,y = 0\) và \(x = 2020\)

\( \Rightarrow {V_2} = \pi \int\limits_0^{2020} {\left| {{{\left( {\sqrt {3x} } \right)}^2}} \right|dx} \) \( = \pi \int\limits_0^{2020} {3xdx}  = \left. {\frac{3}{2}\pi {x^2}} \right|_0^{2020}\) \( = \frac{3}{2}\pi {.2020^2}.\)

\(\Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{2\pi {{.2020}^2}}}{{\frac{3}{2}\pi {{.2020}^2}}} = \frac{4}{3}.\)

Câu 62 Trắc nghiệm

Tính thể tích hình xuyến do quay hình tròn  có phương trình ${x^2} + {\left( {y - 2} \right)^2} = 1$ khi quanh trục $Ox.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét $\left( C \right):{x^2} + {\left( {y - 2} \right)^2} = 1$ có tâm $I\left( {0;2} \right),$ bán kính $R = 1.$ Như vậy

Nửa $\left( C \right)$ trên ứng với $2 \le y \le 3$ có phương trình $y = {f_1}\left( x \right) = 2 + \sqrt {1 - {x^2}} $ với $x \in \left[ { - \,1;1} \right].$

Nửa $\left( C \right)$ dưới ứng với $1 \le y \le 2$ có phương trình $y = {f_2}\left( x \right) = 2 - \sqrt {1 - {x^2}} $ với $x \in \left[ { - \,1;1} \right].$

Khi đó, thể tích khối tròn xoay cần tính là

$V = \pi \int\limits_{ - \,1}^1 {\left[ {{{\left( {2 + \sqrt {1 - {x^2}} } \right)}^2} - {{\left( {2 - \sqrt {1 - {x^2}}} \right)}^2}} \right]\,{\rm{d}}x}  = 8\pi \int\limits_{ - \,1}^1 {\sqrt {1 - {x^2}} \,{\rm{d}}x} .$

Đặt $x = \sin t \Leftrightarrow {\rm{d}}x = \cos t\,{\rm{d}}t$ và đổi cận $\left\{ \begin{array}{l}x =  - \,1\, \Rightarrow \,t =  - \dfrac{\pi }{2}\\x = 1\, \Rightarrow \,t = \dfrac{\pi }{2}\end{array} \right..$

Khi đó $V = 8\pi \int\limits_{ - \,\dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\sqrt {{{\cos }^2}t} .\cos t\,{\rm{d}}t}  = 4\pi \int\limits_{ - \,\dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {1 + \cos 2t} \right)\,{\rm{d}}t}  = 4\pi \left. {\left( {t + \dfrac{1}{2}\sin 2t} \right)} \right|_{ - \,\dfrac{\pi }{2}}^{\dfrac{\pi }{2}} = 4{\pi ^2}.$

Câu 63 Tự luận

Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y=\sqrt{x}\), \(y=-\,x\) và \(x=4.\) Thể tích của khối tròn xoay tạo thành khi quay hình \(\left( H \right)\) quanh trục hoành là \(V=\dfrac{a\pi }{b},\) với \(a,\,\,b>0\) và \(\dfrac{a}{b}\) là phân số tối giản. Tính tổng \(T=a+b.\)

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Hình trên là phần thiết diện của khối tròn xoay bị cắt bởi Oxy

Bước 1: Xét phương trình hoành độ giao điểm.

Phương trình hoành độ giao điểm của \(y=\sqrt{x},\,\,y=-\,x\) là \(\sqrt{x}=-\,x\Leftrightarrow x=0.\)

Bước 2: Tách tích phân ban đầu thành tích phân từ 0 đến 1 và từ 1 đến 4

Khi đó, thể tích cần tính là

 \(\begin{array}{l}V = \pi \int\limits_0^1 {{{\left( {\sqrt x } \right)}^2}dx}  + \pi \int\limits_1^4 {{{\left( { - x} \right)}^2}dx} \\ = \dfrac{\pi }{2} + 21\pi  = \dfrac{{43\pi }}{2}\end{array}\)

=>$a+b=43+2=45$

Câu 64 Trắc nghiệm

Một thùng rượu có bán kính các đáy là \(30\;{\rm{cm}}\), thiết diện vuông góc với trục và cách đều hai đáy có bán kính là \(40\;{\rm{cm}}\), chiều cao thùng rượu là \(1\;{\rm{m}}\). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu là bao nhiêu?

Bạn đã chọn sai | Đáp án đúng:

425,2 lít.

Bạn đã chọn đúng | Đáp án đúng:

425,2 lít.

Bạn chưa làm câu này | Đáp án đúng:

425,2 lít.

Bước 1: Đặt mặt cắt qua trục của thùng rượu lên hệ trục tọa độ Oxy. Gọi \((P):x = a{y^2} + by + c\), tìm (P).

Đơn vị tính là dm.

Gọi \((P):x = a{y^2} + by + c\) qua \(A(4;0),B(3;5),C(3; - 5)\).

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - \dfrac{1}{{25}}}\\{b = 0}\\{c = 4}\end{array}} \right.\)\( \Rightarrow (P):x =  - \dfrac{1}{{25}}{y^2} + 4\)

Bước 2: Tính thể tích thùng rượu

Thể tích của thùng rượu là

\(V = \pi \int_{ - 5}^5 {{{\left( { - \dfrac{1}{{25}}{y^2} + 4} \right)}^2}} dy\)\( \approx 425,2\left( {d{m^3}} \right) = 425,2(l)\)

Câu 65 Trắc nghiệm

Cho \(\left( H \right)\) là hình phẳng giới hạn bởi các đường \(y = \sqrt x \) và \(y = {x^2}.\) Thể tích của khối tròn xoay tạo thành khi quay hình \(\left( H \right)\) quanh trục \(Ox\) bằng

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

ĐK: \(x \ge 0.\)

Xét phương trình hoành độ giao điểm của hai đường thẳng \(y = \sqrt x \) và \(y = {x^2}\): 

\(\begin{array}{l}\sqrt x  = {x^2} \Leftrightarrow \sqrt x \left( {x\sqrt x  - 1} \right) = 0\\ \Leftrightarrow \sqrt x \left( {\sqrt x  - 1} \right)\left( {x + \sqrt x  + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\\sqrt x  - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\end{array}\)

Vậy thể tích khối tròn xoay tạo thành là \(V = \pi \int\limits_0^1 {\left| {{{\left( {\sqrt x } \right)}^2} - {{\left( {{x^2}} \right)}^2}} \right|dx}  = \dfrac{{3\pi }}{{10}}\).