Trong không gian \(Oxyz,\) cho điểm \(M\left( {1;\,\,6; - 3} \right)\) và mặt phẳng \(\left( P \right):\,\,\,2x - 2y + z - 2 = 0.\) Khoảng cách từ \(M\) đến \(\left( P \right)\) bằng:
Đáp án:
Đáp án:
Ta có:\(\left( P \right):\,\,\,2x - 2y + z - 2 = 0\)
\( \Rightarrow d\left( {M;\,\,\left( P \right)} \right) = \dfrac{{\left| {2.1 - 2.6 - 3 - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + 1} }}\) \( = \dfrac{{15}}{3} = 5.\)
Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng\(\left( P \right):\,\,2x + 2y - z - 11 = 0\) và \(\left( Q \right):\,\,2x + 2y - z + 4 = 0\)
Đáp án:
Đáp án:
\(d\left( {\left( P \right),\left( Q \right)} \right) = \dfrac{{\left| { - 11 - 4} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 5.\)
Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( 1;\ 2;\ 3 \right),\ B\left( 3;\ 4;\ 4 \right).\) Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng \(2x+y+mz-1=0\) bằng độ dài đoạn thẳng AB.
Đáp án: $m=$
Đáp án: $m=$
Đặt \(\left( \alpha \right):\ 2x+y+mz-1=0.\)
Ta có: \(d\left( A;\ \left( \alpha \right) \right)=\dfrac{\left| 2.1+2+3.m-1 \right|}{\sqrt{{{2}^{2}}+{{1}^{2}}+{{m}^{2}}}}=\dfrac{\left| 3+3m \right|}{\sqrt{{{m}^{2}}+5}}.\)
\(\begin{array}{l}\overrightarrow {AB} = \left( {2;\;2;\;1} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2} + 1} = 3.\\ \Rightarrow d\left( {A;\left( \alpha \right)} \right) = AB \Leftrightarrow \dfrac{{\left| {3 + 3m} \right|}}{{\sqrt {{m^2} + 5} }} = 3\\ \Leftrightarrow \left| {m + 1} \right| = \sqrt {{m^2} + 5} \\ \Leftrightarrow {m^2} + 2m + 1 = {m^2} + 5\\ \Leftrightarrow m = 2.\end{array}\)