Phương trình mặt phẳng - Lý thuyết

Câu 61 Tự luận

Trong không gian \(Oxyz,\) cho điểm \(M\left( {1;\,\,6; - 3} \right)\) và mặt phẳng \(\left( P \right):\,\,\,2x - 2y + z - 2 = 0.\)  Khoảng cách từ \(M\) đến \(\left( P \right)\) bằng:

Đáp án: 

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: 

Ta có:\(\left( P \right):\,\,\,2x - 2y + z - 2 = 0\)

\( \Rightarrow d\left( {M;\,\,\left( P \right)} \right) = \dfrac{{\left| {2.1 - 2.6 - 3 - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + 1} }}\) \( = \dfrac{{15}}{3} = 5.\)

Câu 62 Tự luận

Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng\(\left( P \right):\,\,2x + 2y - z - 11 = 0\) và \(\left( Q \right):\,\,2x + 2y - z + 4 = 0\)

Đáp án:

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án:

\(d\left( {\left( P \right),\left( Q \right)} \right) = \dfrac{{\left| { - 11 - 4} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 5.\)

Câu 63 Tự luận

Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( 1;\ 2;\ 3 \right),\ B\left( 3;\ 4;\ 4 \right).\) Tìm tất cả các giá trị của tham số m sao cho khoảng cách từ điểm A đến mặt phẳng \(2x+y+mz-1=0\) bằng độ dài đoạn thẳng AB.

Đáp án: $m=$

Câu hỏi tự luận
Bạn chưa làm câu này

Đáp án: $m=$

Đặt \(\left( \alpha  \right):\ 2x+y+mz-1=0.\)

Ta có: \(d\left( A;\ \left( \alpha  \right) \right)=\dfrac{\left| 2.1+2+3.m-1 \right|}{\sqrt{{{2}^{2}}+{{1}^{2}}+{{m}^{2}}}}=\dfrac{\left| 3+3m \right|}{\sqrt{{{m}^{2}}+5}}.\)

\(\begin{array}{l}\overrightarrow {AB}  = \left( {2;\;2;\;1} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2} + 1}  = 3.\\ \Rightarrow d\left( {A;\left( \alpha  \right)} \right) = AB \Leftrightarrow \dfrac{{\left| {3 + 3m} \right|}}{{\sqrt {{m^2} + 5} }} = 3\\ \Leftrightarrow \left| {m + 1} \right| = \sqrt {{m^2} + 5} \\ \Leftrightarrow {m^2} + 2m + 1 = {m^2} + 5\\ \Leftrightarrow m = 2.\end{array}\)