Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Vì $D$ nằm giữa $A$ và $B$ nên suy ra \(AD < AB\). Mà $AD$ và $AB$ lần lượt là hình chiếu của $ED$ và $EB$ trên $AB$ \( \Rightarrow ED < EB\left( 1 \right)\)( quan hệ giữa đường xiên và hình chiếu).
Vì $E$ nằm giữa $A$ và $C$ nên suy ra \(AE < AC\). Mà $AE$ và $AC$ lần lượt là hình chiếu của $EB$ và $BC$ trên $AC$ \( \Rightarrow EB < BC\left( 2 \right)\)( quan hệ giữa đường xiên và hình chiếu).
Từ \(\left( 1 \right)\left( 2 \right) \Rightarrow ED < EB < BC\).
Cho $D$ là một điểm nằm trong \(\Delta ABC\) . Nếu \(AD = AB\) thì:
Gọi $E$ là giao điểm của $BD$ và $AC,$ kẻ \(AP \bot BD\).
Vì \(AD = AB\left( {gt} \right)\) mà $PD$ và $BP$ lần lượt là hình chiếu của $AD$ và $AB$ trên $BE$
\( \Rightarrow PD = BP\) (quan hệ giữa đường xiên và hình chiếu).
Do \(PE > PD = PB\) nên \(AE > AB\left( 1 \right)\) . Mặt khác, \(AC > AE\left( 2 \right)\) nên từ \(\left( 1 \right)\left( 2 \right) \Rightarrow AC > AB.\)
Cho \(\Delta ABC\) có \({90^0} > \widehat B > \widehat C\). Kẻ \(AH \bot BC\left( {H \in BC} \right)\). Gọi $M$ là một điểm nằm giữa $H$ và $B,$ $N$ thuộc tia đối của tia $CB.$
So sánh \(HB\) và \(HC.\)
Vì \(\widehat B > \widehat C\left( {gt} \right) \)\(\Rightarrow AC > AB\left( 1 \right)\) (quan hệ giữa góc và cạnh trong tam giác).
Mà $HB, HC$ tương ứng là hình chiếu của $AB, AC$ trên $BC$
\( \Rightarrow HB < HC\) (quan hệ giữa đường xiên và hình chiếu).
Cho \(\Delta ABC\) có \({90^0} > \widehat B > \widehat C\). Kẻ \(AH \bot BC\left( {H \in BC} \right)\). Gọi $M$ là một điểm nằm giữa $H$ và $B,$ $N$ thuộc tia đối của tia $CB.$
Chọn câu đúng.
Vì $M$ nằm giữa $B$ và $H$ \( \Rightarrow HM < HB\) .
Mà $HM$ và $HB$ tương ứng là hình chiếu của $AM$ và $AB$ trên $BC$
$ \Rightarrow AM < AB\left( 2 \right)$ (quan hệ giữa đường xiên và hình chiếu).
Vì $N$ thuộc tia đối của tia $CB$ thì suy ra \(HN > HC\). Mà $HN$ và $HC$ tương ứng là hình chiếu của $AN$ và $AC$ trên $BC$ \( \Rightarrow AC < AN\left( 3 \right)\) (quan hệ giữa đường xiên và hình chiếu).
Từ \(\left( 1 \right)\left( 2 \right)\left( 3 \right) \Rightarrow AM < AB < AN.\)
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Ta có: \(BM = BC\left( {gt} \right) \Rightarrow \Delta BMC\) cân tại $B$ (dấu hiệu nhận biết tam giác cân)
\( \Rightarrow \widehat {MCB} = \widehat {CMB}\left( 1 \right)\) (tính chất tam giác cân)
Lại có: $\left\{ \begin{array}{l}\widehat {BCM} + \widehat {MCA} = \widehat {ACB} = {90^0}\left( {gt} \right)\\\widehat {CMH} + \widehat {MCH} = {90^0}\left( {gt} \right)\end{array} \right.\left( 2 \right)$
Từ \(\left( 1 \right)\) và \(\left( 2 \right) \Rightarrow \widehat {MCH} = \widehat {MCN}\)
Xét \(\Delta MHC\) và \(\Delta MNC\) có:
$MC$ chung
\(\widehat {MCH} = \widehat {MCN}\left( {cmt} \right)\)
\(NC = HC\left( {gt} \right)\)
\( \Rightarrow \Delta MHC = \Delta MNC\left( {c - g - c} \right) \Rightarrow \widehat {MNC} = \widehat {MHC} = {90^0}\) (2 góc tương ứng)
\( \Rightarrow MN \bot AC\) nên A đúng.
Xét \(\Delta AMN\) có $AN$ là đường vuông góc hạ từ $A$ xuống $MN$ và $AM$ là đường xiên nên suy ra \(AM > AN\) (quan hệ đường vuông góc và đường xiên)
Ta có: \(\left\{ \begin{array}{l}BM = BC\left( {gt} \right)\\HC = CN\left( {gt} \right)\\AM > AN\left( {cmt} \right)\end{array} \right.\)\( \Rightarrow BM + MA + HC > BC + CN + NA\)\( \Leftrightarrow AB + HC > BC + AC\)
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
Kẻ tia phân giác \(Ot\) của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{{{60}^o}}}{2} = {30^o}.\)
Gọi \(I\) là giao của \(Ot\) và \(AB\); \(H,\,K\) lần lượt là hình chiếu của \(A,\,B\) trên tia \(Ot\).
Xét \(\Delta OAH\) có \(\widehat {AOH} = {30^o}\) nên \(OA = 2AH.\)
Vì \(AH,\,AI\) lần lượt là đường vuông góc, đường xiên kẻ từ \(A\) đến \(Ot\) nên \(AH \le AI\) do đó \(OA \le 2AI\) (1)
Xét \(\Delta OBK\) có \(\widehat {BOK} = {30^o}\) nên \(OB = 2BK.\)
Vì \(BK,\,BI\) lần lượt là đường vuông góc, đường xiên kẻ từ \(B\) đến \(Ot\) nên \(BK \le BI\) do đó \(OB \le 2BI\) (2)
Cộng (1) với (2) theo vế với vế ta được:
\(OA + OB \le 2AI + 2BI = 2\left( {AI + BI} \right) = 2AB\)
Dấu “=” xảy ra khi và chỉ khi \(H,\,I,K\) trùng nhau hay \(AB \bot Ot\) suy ra \(\widehat {AIO} = \widehat {BIO} = {90^o}.\)
Xét \(\Delta OAI\) và \(\Delta OBI\) có:
\(\widehat {AIO} = \widehat {BIO} = {90^o}\)
\(\widehat {AOI} = \widehat {BOI}\) (vì \(Ot\) là phân giác của \(\widehat {xOy}\))
\(OI\) cạnh chung
\( \Rightarrow \Delta OAI = \Delta OBI\) (g.c.g)
\( \Rightarrow OA = OB\) (hai cạnh tương ứng).
Vậy \(OA + OB = 2AB\) khi \(OA = OB.\)