Thực hiện phép tính \(\left( { - \dfrac{{25}}{{13}}} \right) + \left( { - \dfrac{9}{{17}}} \right) + \dfrac{{12}}{{13}} + \left( { - \dfrac{{25}}{{17}}} \right)\) ta được kết quả là:
\(\left( { - \dfrac{{25}}{{13}}} \right) + \left( { - \dfrac{9}{{17}}} \right) + \dfrac{{12}}{{13}} + \left( { - \dfrac{{25}}{{17}}} \right)\)
\( = \left( { - \dfrac{{25}}{{13}} + \dfrac{{12}}{{13}}} \right) + \left( { - \dfrac{9}{{17}} - \dfrac{{25}}{{17}}} \right)\)
\( = \dfrac{{ - 25 + 12}}{{13}} + \dfrac{{ - 9 - 25}}{{17}}\)
\( = \dfrac{{ - 13}}{{13}} + \dfrac{{ - 34}}{{17}}\)
$=-1+(-2) =-3$
Tính: \(E = \left( {6 - \dfrac{2}{3} + \dfrac{1}{2}} \right) - \left( {5 + \dfrac{5}{3} - \dfrac{3}{2}} \right) - \left( {3 - \dfrac{7}{3} + \dfrac{5}{2}} \right)\) ta được:
\(E = \left( {6 - \dfrac{2}{3} + \dfrac{1}{2}} \right) - \left( {5 + \dfrac{5}{3} - \dfrac{3}{2}} \right) - \left( {3 - \dfrac{7}{3} + \dfrac{5}{2}} \right)\)
\(E = 6 - \dfrac{2}{3} + \dfrac{1}{2} - 5 - \dfrac{5}{3} + \dfrac{3}{2} - 3 + \dfrac{7}{3} - \dfrac{5}{2}\)
\(E = \left( {6 - 5 - 3} \right) + \left( {\dfrac{1}{2} + \dfrac{3}{2} - \dfrac{5}{2}} \right) + \left( { - \dfrac{2}{3} - \dfrac{5}{3} + \dfrac{7}{3}} \right)\)
\(E = - 2 + \left( {\dfrac{{ - 1}}{2}} \right) + 0\)
\(E = - \dfrac{5}{2}\).
Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:
\(\dfrac{2}{3} + \dfrac{4}{5} = \dfrac{{10}}{{15}} + \dfrac{{12}}{{15}} = \dfrac{{22}}{{15}}.\)
Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)
Ta có \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 4}}{{26}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 15}}{{26}}\)
Do đó kết quả là số hữu tỉ âm.
\(\dfrac{{23}}{{12}}\) là kết quả của phép tính:
Ta có:
\(\dfrac{2}{3} + \dfrac{5}{4} = \dfrac{8}{{12}} + \dfrac{{15}}{{12}} = \dfrac{{23}}{{12}}.\)
\(\dfrac{1}{6} + \dfrac{3}{2} = \dfrac{1}{6} + \dfrac{9}{6} = \dfrac{{10}}{6} = \dfrac{5}{3}.\)
\(\dfrac{5}{3} + \dfrac{3}{2} = \dfrac{{10}}{6} + \dfrac{9}{6} = \dfrac{{19}}{6}.\)
\(1 + \dfrac{{13}}{{12}} = \dfrac{{12}}{{12}} + \dfrac{{13}}{{12}} = \dfrac{{25}}{{12}}.\)
Do đó \(\dfrac{{23}}{{12}}\) là kết quả của phép tính: \(\dfrac{2}{3} + \dfrac{5}{4}.\)
Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
\(\dfrac{{ - 3}}{{14}} = \dfrac{{7 - 10}}{{14}} = \dfrac{7}{{14}} - \dfrac{{10}}{{14}} \)\(= \dfrac{1}{2}-\dfrac{5}{7}\) nên C đúng
+) Đáp án B: \(\dfrac{1}{{14}} - \dfrac{1}{7} = \dfrac{1}{{14}} - \dfrac{2}{{14}} = \dfrac{{ - 1}}{{14}}\ne \dfrac{{ - 3}}{{14}}\) nên loại B.
+) Đáp án A: \(\dfrac{2}{3} - \dfrac{5}{7} = \dfrac{{14}}{{21}} - \dfrac{{15}}{{21}} = \dfrac{{ - 1}}{{21}}\ne \dfrac{{ - 3}}{{14}}\) nên loại A.
+) Đáp án D: \(\dfrac{3}{{14}} - \dfrac{5}{{14}} = \dfrac{{ - 2}}{{14}} = \dfrac{{ - 1}}{7}\ne \dfrac{{ - 3}}{{14}}\) nên loại D.
Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:
$\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5} = \dfrac{2}{7} + \left[ {\left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5}} \right]$$ = \dfrac{2}{7} + 0\, = \dfrac{2}{7}.$
Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:
$x + \dfrac{1}{2} = \dfrac{3}{4}$
$x\,\, = \dfrac{3}{4} - \dfrac{1}{2}$
\(x = \dfrac{3}{4} - \dfrac{2}{4}\)
\(x = \dfrac{1}{4}\)
Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :
Ta có \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\)\( = \dfrac{{12}}{{30}} + \left( {\dfrac{{ - 40}}{{30}}} \right) + \left( {\dfrac{{ - 15}}{{30}}} \right) = \dfrac{{12 - 40 - 15}}{{30}} = \dfrac{{ - 43}}{{30}}\)
Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
Ta có \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{2}{8} + \dfrac{3}{8}} \right)} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \dfrac{5}{8}} \right]\)
\( = \dfrac{1}{3} - \left[ {\left( { - \dfrac{{10}}{8}} \right) - \dfrac{5}{8}} \right]\)
\( = \dfrac{1}{3} - \left( { - \dfrac{{15}}{8}} \right)\)
\( = \dfrac{1}{3} + \dfrac{{15}}{8}\)
\( = \dfrac{8}{{24}} + \dfrac{{45}}{{24}}\)
\( = \dfrac{{53}}{{24}}\)
Vậy $A = \dfrac{{53}}{{24}} > \dfrac{{48}}{{24}} = 2$ hay \(A > 2\) .
Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$
\(\dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}} = \left( {\dfrac{2}{{11}} + \dfrac{9}{{11}}} \right) - \left( {\dfrac{5}{{13}} + \dfrac{8}{{13}}} \right) = \dfrac{{11}}{{11}} - \dfrac{{13}}{{13}} = 1 - 1 = 0.\)
Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:
\(x + y = \dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{ad}}{{bd}} + \dfrac{{cb}}{{bd}} = \dfrac{{ad + cb}}{{bd}}.\)
Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:
$\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right) = ( - 2) + \left( { - \dfrac{1}{3} - \dfrac{2}{3}} \right) + \left( { - \dfrac{1}{5} + \dfrac{6}{5}} \right)$$ = ( - 2) + ( - 1) + 1 = - 2$
Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).
\(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\)
\( = \dfrac{2}{3} - \dfrac{1}{4} + 2 - 2 + \dfrac{5}{2} - \dfrac{1}{4} - \dfrac{5}{2} + \dfrac{1}{3}\)
\( = \left( {\dfrac{2}{3} + \dfrac{1}{3}} \right) + \left( {2 - 2} \right) + \left( {\dfrac{5}{2} - \dfrac{5}{2}} \right) + \left( { - \dfrac{1}{4} - \dfrac{1}{4}} \right)\)
\( = 1 + 0 + 0 - \dfrac{1}{2}\)
\( = \dfrac{1}{2}\)
Vậy \(M = \dfrac{1}{2}\) .
Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)
Ta có
\(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)
\(\dfrac{3}{7} - x = \dfrac{5}{{20}} + \dfrac{{12}}{{20}}\)
\(\dfrac{3}{7} - x = \dfrac{{17}}{{20}}\)
\(x = \dfrac{3}{7} - \dfrac{{17}}{{20}}\)
\(x = \dfrac{{60}}{{140}} - \dfrac{{119}}{{140}}\)
\(x = \dfrac{{ - 59}}{{140}}\)
Vậy \(x = \dfrac{{ - 59}}{{140}}\).
Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
Ta có \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
\(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{2}{3}\)
\(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{8}{{12}}\)
\(\dfrac{2}{5} + x = \dfrac{3}{{12}}\)
\(x = \dfrac{1}{4} - \dfrac{2}{5}\)
\(x = \dfrac{5}{{20}} - \dfrac{8}{{20}}\)
\(x = \dfrac{{ - 3}}{{20}}\)
Vậy \(x = \dfrac{{ - 3}}{{20}}\).
Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó
$\begin{array}{l}x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}\\x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = 0.\end{array}$
Mà $2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}} = - 1 + \dfrac{1}{{2018}} - \dfrac{1}{{2019}} < 0$ nên $x = 0$ .
Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là
$\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$
$ = 1 - \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{5} + ... - \dfrac{1}{{2018}} + \dfrac{1}{{2018}} - \dfrac{1}{{2019}}$
$ = 1 - \dfrac{1}{{2019}}$
$ = \dfrac{{2018}}{{2019}}$ .
Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là:
\(\dfrac{{ - 2}}{3} + \dfrac{4}{3} = \dfrac{{ - 2 + 4}}{3} = \dfrac{2}{3}\)