Gọi ${x_0}$ là giá trị thỏa mãn \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\). Chọn câu đúng.
Ta có \(\dfrac{5}{7}:x - \dfrac{2}{5} = \dfrac{1}{3}\)
\(\dfrac{5}{7}:x = \dfrac{1}{3} + \dfrac{2}{5}\)
\(\dfrac{5}{7}:x = \dfrac{5}{{15}} + \dfrac{6}{{15}}\)
\(\dfrac{5}{7}:x = \dfrac{{11}}{{15}}\)
\(x = \dfrac{5}{7}:\dfrac{{11}}{{15}}\)
\(x = \dfrac{5}{7}.\dfrac{{15}}{{11}}\)
\(x = \dfrac{{75}}{{77}}\)
Vậy \({x_0} = \dfrac{{75}}{{77}} < \dfrac{{77}}{{77}} = 1\) .
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)?
Ta có \(\dfrac{1}{3}x + \dfrac{2}{5}\left( {x - 1} \right) = 0\)
\(\dfrac{1}{3}x + \dfrac{2}{5}x - \dfrac{2}{5} = 0\)
\(\dfrac{1}{3}x + \dfrac{2}{5}x = \dfrac{2}{5}\)
\(x\left( {\dfrac{1}{3} + \dfrac{2}{5}} \right) = \dfrac{2}{5}\)
\(x.\left( {\dfrac{5}{{15}} + \dfrac{6}{{15}}} \right) = \dfrac{2}{5}\)
\(x.\dfrac{{11}}{{15}} = \dfrac{2}{5}\)
\(x = \dfrac{2}{5}:\dfrac{{11}}{{15}}\)
\(x = \dfrac{2}{5}.\dfrac{{15}}{{11}}\)
\(x = \dfrac{{2.15}}{{5.11}}\)
\(x = \dfrac{6}{{11}}\)
Vậy có một giá trị của \(x\) thoả mãn điều kiện.
Biểu thức \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\) có giá trị là
Ta có \(P = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5}} \right):\dfrac{3}{7} + \left( {\dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}\)$ = \left( {\dfrac{{ - 3}}{4} + \dfrac{2}{5} + \dfrac{3}{5} + \dfrac{{ - 1}}{4}} \right):\dfrac{3}{7}$
\( = \left[ {\left( {\dfrac{{ - 3}}{4} + \dfrac{{ - 1}}{4}} \right) + \left( {\dfrac{2}{5} + \dfrac{3}{5}} \right)} \right]:\dfrac{3}{7}\) \( = \left( { - 1 + 1} \right):\dfrac{3}{7} = 0:\dfrac{3}{7} = 0\)
Vậy \(P = 0.\)
Cho \({x_1}\) là giá trị thỏa mãn \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\) và \({x_2}\) là giá trị thỏa mãn \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1.\) Khi đó, chọn câu đúng.
Ta có: \(\dfrac{3}{7} + \dfrac{1}{7}:x = \dfrac{3}{{14}}\)
\(\dfrac{1}{7}:x = \dfrac{3}{{14}} - \dfrac{3}{7}\)
\(\dfrac{1}{7}:x = \dfrac{3}{{14}} - \dfrac{6}{{14}}\)
\(\dfrac{1}{7}:x = \dfrac{{ - 3}}{{14}}\)
\(x = \dfrac{1}{7}:\left( {\dfrac{{ - 3}}{{14}}} \right)\)
\(x = \dfrac{1}{7}.\dfrac{{14}}{{\left( { - 3} \right)}}\)
\(x = - \dfrac{2}{3}\)
Vậy \({x_1} = - \dfrac{2}{3}\)
* \(\dfrac{5}{7} + \dfrac{2}{7}:x = 1\)
\(\dfrac{2}{7}:x = 1 - \dfrac{5}{7}\)
\(\dfrac{2}{7}:x = \dfrac{2}{7}\)
\(x = \dfrac{2}{7}:\dfrac{2}{7}\)
\(x = 1\)
Vậy \({x_2} = 1\) .
Mà \( - \dfrac{2}{3} < 0 < 1\) nên \({x_1} < {x_2}\) .
Tìm $x$ , biết: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2.$
Ta có: $\left[ {\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2} \right]:\,\,3\,\, = \,\,2$
$\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2\,\, = \,\,2.3$
$\left( {{\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}} \right)\,\,:\,\,2\,\, = \,\,6$
${\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}\, = \,\,6.2$
${\rm{8}}{\kern 1pt} \, + {\kern 1pt} {\kern 1pt} \,\dfrac{{\rm{x}}}{{1000}}\, = \,\,12$
$\,\dfrac{{\rm{x}}}{{1000}}\, = \,\,12 - 8$
$\,\dfrac{{\rm{x}}}{{1000}}\, = \,\,4$
\(x = 4.1000\)
\(x = 4000\)
Tính giá trị biểu thức: $A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}.$
$A = \dfrac{{\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}}}{{\dfrac{8}{3} - \dfrac{8}{5} + \dfrac{8}{{10}}}} + \dfrac{1}{2}$
$A = \dfrac{{\left( {\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}} \right)}}{{4.\left( {\dfrac{2}{3} - \dfrac{2}{5} + \dfrac{2}{{10}}} \right)}} + \dfrac{1}{2}$
$A = \dfrac{1}{4} + \dfrac{1}{2}$
$A = \dfrac{3}{4}.$
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,?\)
Ta có \(\left( {\dfrac{2}{3}x - \dfrac{4}{9}} \right)\left( {\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x} \right) = 0\,\)
TH1: \(\dfrac{2}{3}x - \dfrac{4}{9} = 0\)
\(\dfrac{2}{3}x = \dfrac{4}{9}\)
\(x = \dfrac{4}{9}:\dfrac{2}{3}\)
\(x = \dfrac{4}{9}.\dfrac{3}{2}\)
\(x = \dfrac{2}{3}\)
TH2: \(\dfrac{1}{2} + \dfrac{{ - 3}}{7}:x = 0\)
\(\dfrac{{ - 3}}{7}:x = \dfrac{{ - 1}}{2}\)
\(x = \dfrac{{ - 3}}{7}:\left( {\dfrac{{ - 1}}{2}} \right)\)
\(x = \dfrac{6}{7}\)
Vậy có hai giá trị của \(x\) thỏa mãn là \(x = \dfrac{2}{3};x = \dfrac{6}{7}\) .
Thực hiện phép tính \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\) ta được kết quả là
Ta có \(\dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{1}{5} - \dfrac{2}{{15}}} \right) + 1\dfrac{2}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\left( {\dfrac{3}{{15}} - \dfrac{2}{{15}}} \right) + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}:\dfrac{1}{{15}} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{{45}}.\dfrac{{15}}{1} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
\( = \dfrac{2}{9}.\left[ {\dfrac{{ - 4}}{3} + \dfrac{5}{3}} \right] - \left( {\dfrac{{ - 5}}{{27}}} \right)\)
$ = \dfrac{2}{9}.\dfrac{1}{3} - \left( {\dfrac{{ - 5}}{{27}}} \right)$
\( = \dfrac{2}{{27}} + \dfrac{5}{{27}}\)
\( = \dfrac{7}{{27}}\)
Nếu \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0}, y\ne 0 \right)\) thì \(x:y\) bằng: