1. Hệ bất phương trình bậc nhất hai ẩn
+) Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.
Ví dụ: \(\left\{ \begin{array}{l}2x + 3y > 10\\x - y \le 7\end{array} \right.\);\(\left\{ \begin{array}{l}x + 3y \le 5\\x - 2y > 7\\2x > 3\end{array} \right.\)
+) Cặp số \(({x_0};{y_0})\) là nghiệm của một hệ BPT bậc nhất hai ẩn khi \(({x_0};{y_0})\) đồng thời là nghiệm của tất cả các BPT trong hệ đó.
Ví dụ: cặp số \((7;0)\) là một nghiệm của hệ BPT \(\left\{ \begin{array}{l}2x + 3y > 10\\x - y \le 7\end{array} \right.\)
2. Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
+) Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của hệ bất phương trình bậc nhất hai ẩn là miền nghiệm của hệ BPT đó.
+) Miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ.
+) Cách xác định miền nghiệm của một hệ BPT bậc nhất hai ẩn:
Bước 1: Trên cùng một mặt phẳng tọa độ, xác định miền nghiệm của mỗi bất phương trình trong hệ và gạch bỏ miền còn lại.
Bước 2: Miền không bị gạch là miền nghiệm của hệ BPT đã cho.
3. Ứng dụng của hệ bất phương trình bậc nhất hai ẩn
Cho hệ BPT bậc nhất hai ẩn x, y có miền nghiệm là miền đa giác \({A_1}{A_2}...{A_n}\).
Khi đó: Giá trị lớn nhất (hay nhỏ nhất) của biểu thức \(F(x;y) = mx + ny\), với \((x;y)\) là tọa độ các điểm thuộc miền đa giác \({A_1}{A_2}...{A_n}\), đạt được tại một trong các đỉnh của đa giác đó.