Giải câu hỏi mở đầu trang 84 SGK Toán 10 tập 1 – Kết nối tri thức

Đề bài

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình

Toán

Vật lí

Hóa học

Ngữ văn

Lịch sử

Địa lí

Tin học

Tiếng Anh

An

9,2

8,7

9,5

6,8

8,0

8,0

7,3

6,5

Bình

8,2

8,1

8,0

7,8

8,3

7,9

7,6

8,1

Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?

Phương pháp giải - Xem chi tiết

- Sắp xếp số liệu theo thứ tự không giảm.

- So sánh khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của 2 mẫu số liệu

Lời giải chi tiết

Sắp xếp lại theo thứ tự không giảm:

Bạn An: 6,5 6,8 7,3 8,0 8,0 8,7 9,2 9,5

Bạn Bình: 7,6 7,8 7,9 8,0 8,1 8,1 8,2 8,3

+ So sánh theo khoảng biến thiên:

Bạn An: \({R_1} = 9,5 - 6,5 = 3\)

Bạn Bình: \({R_2} = 8,3 - 7,6 = 0,7\)

Ta thấy \({R_1} > {R_2}\) nên bạn Bình học đều hơn

+ So sánh theo khoảng tứ phân vị:

Bạn An: n=8

\({Q_1} = \frac{{6,8 + 7,3}}{2} = 7,05\), \({Q_4} = \frac{{8,7 + 9,2}}{2} = 8,95\)

Khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = 8,95 - 7,05 = 1,9\)

Bạn Bình: n=8

\(Q{'_1} = \frac{{7,8 + 7,9}}{2} = 7,85\), \(Q{'_3} = \frac{{8,1 + 8,2}}{2} = 8,15\)

Khoảng tứ phân vị

\(\Delta {'_Q} = Q{'_3} - Q{'_1} = 8,15 - 7,85 = 0,3\)

=> Ta thấy \({\Delta _Q} > \Delta {'_Q}\) nên bạn Bình học đều hơn

+ So sánh theo phương sai hoặc độ lệch chuẩn

Bạn An: \(\overline x = 8\)

Ta có bảng:

Giá trị

Độ lệch

Bình phương độ lệch

6,5

-1,5

2,25

6,8

-1,2

1,44

7,3

-0,7

0,49

8

0

0

8

0

0

8,7

0,7

0,49

9,2

1,2

1,44

9,5

1,5

2,25

Tổng

8,36

Phương sai là \({s_1}^2 = \frac{{8,36}}{8} = 1,045\)

Độ lệch chuẩn là \({s_1} = \sqrt {1,045} \approx 1,02\)

Bạn Bình: \(\overline x = 8\)

Ta có bảng:

Giá trị

Độ lệch

Bình phương độ lệch

7,60

-0,40

0,16

7,80

-0,20

0,04

7,90

-0,10

0,01

8,00

0,00

0,00

8,10

0,10

0,01

8,10

0,10

0,01

8,20

0,20

0,04

8,30

0,30

0,09

Tổng

0,36

Phương sai là \({s_2}^2 = \frac{{0,36}}{8} = 0,045\)

Độ lệch chuẩn là \({s_2} = \sqrt {0,045} \approx 0,21\)

Ta thấy \({s_2} < {s_1}\) nên bạn Bình học đều hơn