Giải mục 1 trang 66 SGK Toán 10 tập 1 - Kết nối tri thức

Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Trong hình 4.39, số đo góc BAC cũng được gọi là số đo góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \). Hãy tìm số đo các góc giữa \(\overrightarrow {BC} \) và \(\overrightarrow {BD} \), \(\overrightarrow {DA} \) và \(\overrightarrow {DB} \).

Lời giải chi tiết:

Góc giữa hai vectơ \(\overrightarrow {BC} \) và \(\overrightarrow {BD} \) là góc CBD và số đo \(\widehat {CBD} = {30^o}\).

Góc giữa hai vectơ \(\overrightarrow {DA} \) và \(\overrightarrow {DB} \) là góc ADB.

Ta có: \(\widehat {ACB} = \widehat {CBD} + \widehat {CDB}\) (tính chất góc ngoài)

\(\begin{array}{l} \Leftrightarrow \widehat {CDB} = {80^o} - {30^o} = {50^o}\\ \Leftrightarrow \widehat {ADB} = {50^o}\end{array}\)

Vậy số đo góc giữa hai vectơ \(\overrightarrow {BC} \) và \(\overrightarrow {BD} \), \(\overrightarrow {DA} \) và \(\overrightarrow {DB} \) lần lượt là \({30^o},{50^o}\)

Câu hỏi

Khi nào thì góc giữa hai vectơ bằng \({0^o}\), bằng \({180^o}?\)

Phương pháp giải:

Cách xác định góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \)

Lấy điểm A bất kì vẽ \(\overrightarrow {AB} = \overrightarrow u ,\overrightarrow {AC} = \overrightarrow v \), khi đó \((\vec u,\vec v) = (\overrightarrow {AB} ,\overrightarrow {AC} ) = \widehat {BAC}\)

Lời giải chi tiết:

Góc giữa hai vectơ bằng \({0^o}\) nếu chúng cùng hướng

Góc giữa hai vectơ bằng \({180^o}\) nếu chúng ngược hướng.

Luyện tập 1

Cho tam giác đều ABC. Tính \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\).

Phương pháp giải:

Lấy D sao cho: \(\overrightarrow {AD} = \overrightarrow {BC} \).

Khi đó: \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD}\)

Lời giải chi tiết:

Lấy điểm D sao cho: \(\overrightarrow {AD} = \overrightarrow {BC} \)

Khi đó ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD}\)

Dễ thấy ABCD là hình bình hành (hơn nữa còn là hình thoi) nên \(\widehat {BAD} = {180^o} - \widehat {ABC} = {120^o}\)

Vậy số đo góc \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\) là \({120^o}\).