Cho tam giác ABC có \(\widehat B = {135^o}\). Khẳng định nào sau đây là đúng?
LG a
A. \(S = \frac{1}{2}ca\)
B. \(S = \frac{{ - \sqrt 2 }}{4}ac\)
C. \(S = \frac{{\sqrt 2 }}{4}bc\)
D. \(S = \frac{{\sqrt 2 }}{4}ca\)
Phương pháp giải:
Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)
Lời giải chi tiết:
Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)
Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).
\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)
Chọn D
LG b
A. \(R = \frac{a}{{\sin A}}\)
B. \(R = \frac{{\sqrt 2 }}{2}b\)
C. \(R = \frac{{\sqrt 2 }}{2}c\)
D. \(R = \frac{{\sqrt 2 }}{2}a\)
Phương pháp giải:
Định lí sin: \(R = \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Lời giải chi tiết:
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = R\)
A. \(R = \frac{a}{{\sin A}}\) đúng
B. \(R = \frac{{\sqrt 2 }}{2}b\)
Mà \(\sin B = \frac{{\sqrt 2 }}{2} \Rightarrow R = \frac{b}{{\sin B}} = \frac{b}{{\frac{{\sqrt 2 }}{2}}} = b\sqrt 2 \)
Vậy B sai.
C. \(R = \frac{{\sqrt 2 }}{2}c\) (Loại vì không có dữ kiện về góc C nên không thể tính R theo c.)
D. \(R = \frac{{\sqrt 2 }}{2}a\) (Loại vì không có dữ kiện về góc A nên không thể tính R theo a.)
Chọn A
LG c
A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)
B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)
C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)
D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)
Phương pháp giải:
Định lí sin: \(R = \frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Định lí cos: \({b^2} = {c^2} + {a^2} - 2ca.\cos B;\;\;{a^2} = {c^2} + {b^2} - 2bc.\cos A\)
Lời giải chi tiết:
A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)
Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)
B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)
Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)
C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))
D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)
Theo định lý cos ta có:
\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)
Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).
Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)
=> D đúng.
Chọn D