Đề bài
Xét dấu các tam thức bậc hai sau:
a) \(3{x^2} - 4x + 1\)
b) \({x^2} + 2x + 1\)
c) \( - {x^2} + 3x - 2\)
d) \( - {x^2} + x - 1\)
Phương pháp giải - Xem chi tiết
Xét dấu tam thức bậc hai \(f(x) = a{x^2} + bx + c\)
Bước 1: Tính \(\Delta = {b^2} - 4ac\)
Bước 2:
- Nếu \(\Delta < 0\) thì \(f(x)\) luôn cùng dấu với a với mọi \(x \in \mathbb{R}\)
- Nếu \(\Delta = 0\) thì \(f(x)\)có nghiệm kép là \({x_0}\) . Vậy \(f(x)\)cùng dấu với a với \(x \ne {x_0}\)
- Nếu \(\Delta > 0\) thì \(f(x)\)có 2 nghiệm là \({x_1};{x_2}\)\(({x_1} < {x_2})\). Ta lập bảng xét dấu.
Lời giải chi tiết
a) \(f(x) = 3{x^2} - 4x + 1\)có \(\Delta = 4\)>0, \(a = 3 > 0\)và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{3}\). Do đó ta có bảng xét dấu \(f(x)\):
Suy ra \(f(x) > 0\)với mọi \(x \in \left( { - \infty ;\frac{1}{3}} \right) \cup \left( {1; + \infty } \right)\) và \(f(x) < 0\)với mọi \(x \in \left( {\frac{1}{3};1} \right)\)
b) \(g(x) = {x^2} + 2x + 1\) có \(\Delta = 0\) và a=1>0 nên \(g(x)\)có nghiệm kép \(x = - 1\) và \(g(x) > 0\)với \(x \ne - 1\)
c) \(h(x) = - {x^2} + 3x - 2\) có \(\Delta = 1 > 0\), \(a = - 1\)<0 và có hai nghiệm phân biệt \({x_1} = 1;{x_2} = 2\). Do đó ta có bảng xét dấu \(h(x)\):
Suy ra \(h(x) > 0\) với mọi \(x \in (1;2)\)và \(h(x) < 0\)với mọi \(x \in ( - \infty ;1) \cup (2; + \infty )\)
d) \(k(x) = - {x^2} + x - 1\) có \(\Delta = - 3\)<0 và \(a = - 1\)<0 nên \(f(x) < 0\) với mọi \(x \in \mathbb{R}\)