Bài tập điện xoay chiều hay và khó (phần 2)

  •   
Câu 1 Trắc nghiệm

Đặt điện áp u=1802cosωt(V) (với ω không đổi) vào hai đầu đoạn mạch AB gồm đoạn mạch AM  nối tiếp đoạn mạch MB. Đoạn mạch AM có điện trở thuần R, đoạn mạch MB có cuộn cảm thuần có độ tự cảm L thay đổi được và tụ điện có điện dung C mắc nối tiếp. Điện áp hiệu dụng ở hai đầu đoạn mạch AM và độ lớn góc lệch pha của cường độ dòng điện so với điện áp u khi L=L1  là Uφ1, còn khi L=L2  thì tương ứng là 8Uφ2 . Biết φ1+φ2=900. Hệ số công suất của mạch khi L=L1  là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có:

+ Khi L=L1  thì UAM1=UR1=U

+ Khi L=L2  thì UAM2=UR2=8U

φ1+φ2=π2tanφ1tanφ2=1ZL1ZC1R.ZL2ZC2R=1 (1)

Mặt khác, ta có:

UR1UR2=18I2=8I1Z1=8Z2R2+(ZL1ZC)2=8R2+(ZL2ZC)2(ZL1ZC)27R28(ZL2ZC)2=0(2)

Chia cả hai vế của (2) cho   kết hợp với (1), ta được:

(ZL1ZC)2(ZL2ZC)27(ZL1ZC)(ZL2ZC)8=0[(ZL1ZC)(ZL2ZC)=1(Loai)(ZL1ZC)(ZL2ZC)=8

Với (ZL1ZC)(ZL2ZC)=8(ZL1ZC)8=(ZL2ZC)

Thay vào (1) => (ZL1ZC)2=8R2

Hệ số công suất của mạch khi L=L1 : cosφ1=RZ1=RR2+(ZL1ZC)2=R3R=13

Câu 2 Trắc nghiệm

Điện năng được truyền từ nơi phát đến một khu dân cư bằng đường dây một pha với hiệu suất truyền tải là 75%. Coi hao phí điện năng chỉ do tỏa nhiệt trên đường dây và không vượt quá 40%. Nếu công suất sử dụng điện của khu dân cư này tăng 25% và giữ nguyên điện áp ở nơi phát thì hiệu suất truyền tải điện năng trên chính đường dây đó là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

ΔP=P2RU2cos2φ=P2x ( x=RU2cos2φkhông đổi)

Ban đầu: ΔPP=Px=1H=10,75=0,25

Sau khi công suất sử dụng tăng lên 25%:

PΔP=1,25(PΔP)=0,9375PPP2x=0,937PPPP2.P0,25P=0,9375

Đặt PP=k , ta có:  k0,25k2=0,9375[k=2,5k=1,5

Với k=2,5, ta suy ra:

H=1ΔPP=1Px=12,5Px=0,375=37,5% (loại vì hao phí không quá 40%)

Với k=1,5, ta suy ra:

H=1ΔPP=1Px=11,5Px=0,625=62,5%

Câu 3 Trắc nghiệm

Cho dòng điện xoay chiều  chạy qua  đoạn mạch AB có sơ đồ  như hình bên, trong đó L là cuộn cảm thuần và X là đoạn mạch xoay chiều. Khi đó, điện áp giữa hai đầu các đoạn mạch AN và MB có biểu thức  lần lượt uAN=302cosωt(V);uMB=402cos(ωtπ2)(V)

Điện áp hiệu dụng giữa hai đầu đoạn mạch AB có giá trị nhỏ nhất là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

uAN=uL+uX

uMB=uC+uX

uAB=uAN+uC

UABOH(UAB)min=OH

Áp dụng hệ thức lượng trong tam giác vuông ta có : 1U2AB=1U2AN+1U2MBUAB=24V  

Câu 4 Trắc nghiệm

Đặt điện áp xoay chiều u=U0cos(ωt+φ) vào  hai đầu đoạn mạch AB gồm điện trở , tụ  điện và cuộn cảm thuần mắc nối tiếp  (hình H1 ).  Ban đầu  khóa K đóng, sau đó khóa K mở. Hình H2  là  đồ thị biểu diễn sự  phụ thuộc của cường  độ dòng  điện i trong  đoạn mạch vào thời gian t. Giá trị  của U0 gần nhất với giá trị nào sau đây?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

U2032=R20+Z2LZ2L=U20325,76U2042=R20+(ZLZC)2(ZLZC)2=U20425,76R2=ZL(ZLZC)R2Z2L=ZLZCZLU20425,76U20325,76=(R2Z2L)2

(U20425,76)(U20325,76)=R4(U20325,76)(U20425,76)(U20325,76)=R4U4032.425,76(U2032+U2042)=0U0=R32+42=120V  

Câu 5 Trắc nghiệm

Đặt điện áp u=U0cos100πt(V) (t tính bằng s) vào đoạn mạch gồm cuộn dây và tụ điện mắc nối tiếp. Cuộn dây có độ tự cảm L=1,5πH, điện trở r=503Ω, tụ điện có điện dung C=104πF . Tại thời điểm t1, điện áp tức thời giữa hai đầu cuộn dây có giá trị 150V, đến thời điểm t1+175s thì điện áp giữa hai đầu tụ điện cũng bằng 150V. Giá trị của U0 bằng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có:

 ZL=ωL=150Ω;ZC=1ωC=100Ω;r=503ΩZ=100Ω;Zd=r2+ZL2=1003

 i=U0Zcos(ωtπ6)=0,01U0cos(ωtπ6)ud=I0Zdcos(ωt+π6)=U03cos(ωt+π6)uC=I0ZCcos(ωt2π3)=U0cos(ωt2π3)

 ud=U03cos(ωt1+π6)=150V (1)

Tại thời điểm  t2=t1+175s, ta có: uC=U0cos(ω(t1+175)2π3)=U0cos(ωt1+2π3)=U0sin(ωt1+π6)=150V (2)

Từ (1) và (2), ta có:  (ud3)2+(uC)2=U2015023+1502=U20U0=1003  

Câu 6 Trắc nghiệm

Cho mạch điện xoay chiều gồm điện trở thuần R, tụ điện có điện dung C và cuộn dây có độ tự cảm L mắc nối tiếp theo thứ tự đó. Biết tụ điện có điện dung C có thể thay đổi được, khi C=C1=62,5πμF điện áp hai đầu mạch U=150V thì mạch tiêu thụ công suất cực đại Pmax=93,75W. Khi C=C1=19πμF  thì điện áp hiệu dụng trên hai đầu đoạn mạch chứa điện trở thuần và tụ điện (uRC) và cuộn dây (ud) vuông pha với nhau, điện áp hiệu dụng hai đầu cuộn dây khi đó là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có  u=1502.cos(100πt)Vω=100π

Khi C=C1=62,5πμF  thì , ZC1=1ωC1=160Ω

Pmax  khi Imax   có xảy ra cộng hưởng => ZL=ZC=160Ω
  P=I2R=U2Z2.R=U2.RmRm2+(ZLZC)2

Thay số từ đề bài P=93,75W;U=150V ; ta tính được  

C=C2=19πμF=>ZC2=90Ω thì Ud vuông pha với URC

Ud vuông pha với URC  cho ta biết cuộn dây có điện trở trong r

I=UZ=UR2+(ZLZC2)=1502402+(16090)2=0,6A

ULr vuông góc với URC nên: U2Lr+U2RC=1502U2L+U2r+U2R+U2C=1502

Mặt khác theo định luật Ôm ta có:

U2Rr+(ULUC)2=U2=1502(UR+Ur)2+(ULUC)2=1502U2R+2URUr+U2r+U2L+U2L2.UL.UC=1502UR.UrULUC=0=>r.RZL.ZC=0=>r.R=ZL.ZC=160.90

\left\{ {\begin{array}{*{20}{l}} {r.R = 160.90} \\ {r + R = 240} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {r = 120\Omega } \\ {R = 120\Omega {\text{}}} \end{array}} \right.

{U_d} = I.\sqrt {{r^2} + Z_L^2}  = 0,6.\sqrt {{{120}^2} + {{160}^2}}  = 120V

Câu 7 Trắc nghiệm

Điện năng được truyền từ nơi phát đến một xưởng sản xuất bằng đường dây một pha với hiệu suất truyền tải là 90\% . Ban đầu xưởng sản xuất này có 90 máy hoạt động, vì muốn mở rộng quy mô sản xuất nên xưởng đã nhập thêm về một số máy. Hiệu suất truyền tải lúc sau (khi có thêm các máy mới cùng hoạt động) đã giảm đi 10\% so với ban đầu. Coi hao phí điện năng chỉ do toả nhiệt trên đường dây, công suất tiêu thụ điện của các máy hoạt động (kể cả các máy mới nhập về) đều như nhau và hệ số công suất trong các trường hợp đều bằng 1. Nếu giữ nguyên điện áp nơi phát thì số máy hoạt động đã được nhập về thêm là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Do hiệu điện thế U không đổi nên:  \frac{{\Delta {P_2}}}{{\Delta {P_1}}} = {(\frac{{{P_2}}}{{{P_1}}})^2} \to \frac{{{P_2}}}{{{P_1}}} = 2

{H_1} = 90\%

\to {P_n} = 0,9{P_1} \to {P_0} = \frac{{{P_n}}}{{90}} = 0,01{P_1}  (1)

Gọi x là số máy nhập thêm => công suất khi nhập mới:

(90 + x).0,01{P_1} = 0,8{P_2} \to {P_2} = \frac{{(90 + x).0,01{P_1}}}{{0,8}}  (2)

{P_2} = 2{P_1} ,  

{\rm{}} \to \frac{{(90 + x).0,01{P_1}}}{{0,8}} = 2{P_1} \to (90 + x) = 160 \to x = 70

Câu 8 Trắc nghiệm

Đặt điện áp u = 200cos\omega t\left( V \right) (\omega thay đổi được) vào hai đầu đoạn mạch mắc nối tiếp gồm cuộn cảm thuần có độ tự cảm L, điện trở R và tụ điện có điện dung C, với C{R^2} < 2L. Điện áp hiệu dụng giữa hai bản tụ điện và điện áp hiệu dụng hai đầu cuộn cảm lần lượt là {U_C},{U_L}  phụ thuộc vào \omega , chúng được biểu diễn bằng các đồ thị như hình vẽ bên, tương ứng với các đường {U_C},{U_L}. Giá trị của {U_M}  trong đồ thị gần nhất với giá trị nào sau đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khi \omega {\rm{ }} = {\rm{ }}0 thì {U_C} = U

Khi  \omega {\rm{}} = {\omega _C} = \sqrt {\dfrac{{2L - {R^2}C}}{{2{L^2}C}}}

thì {U_C}  cực đại

 Khi  \omega {\rm{}} = {\omega _R} = \sqrt {\dfrac{1}{{LC}}}

thì {U_R}  đạt cực đại bằng U

Khi \omega  = 0 thì {U_L} = 0 khi  \omega {\rm{}} = {\omega _L} = \sqrt {\dfrac{2}{{2LC - {R^2}C}}}

thì {U_{{L_{max}}}} = {U_M}

Đặt  n = \dfrac{{{\omega _L}}}{{{\omega _C}}} = \dfrac{{2L}}{{2L - {R^2}C}} = {\rm{}} > \dfrac{1}{n} = 1 - \dfrac{{{R^2}C}}{{2L}} = 1 - \dfrac{{{R^2}}}{{2{Z_L}{Z_C}}};{\left( {\dfrac{U}{{{U_{{L_{max}}}}}}} \right)^2} + {\left( {\dfrac{1}{n}} \right)^2} = {\left( {\dfrac{U}{{{U_{{C_{max}}}}}}} \right)^2} + {\left( {\dfrac{1}{n}} \right)^2} = 1

Tại giao điểm của hai đồ thị, ta có {U_L} = {U_C} = U (cộng hưởng ) 

\begin{array}{*{20}{l}} { = {\text{}} > \dfrac{1}{n} = 1 - \dfrac{{{R^2}}}{{2{Z_L}{Z_C}}} = 1 - \dfrac{{U_R^2}}{{2{U_L}{U_C}}} = 1 - \dfrac{{{U^2}}}{{2.U.U}} = \dfrac{1}{2} = {\text{}} > n = 2} \\ {{U_M} = {U_{{C_{max}}}} = {U_{{L_{max}}}} = \dfrac{{nU}}{{\sqrt {{n^2} - 1} }} = \dfrac{{2.100\sqrt 2 }}{{\sqrt {{2^2} - 1} }} = 163,3(V)} \end{array}

Câu 9 Trắc nghiệm

Đặt vào hai đầu đoạn mạch AB một điện áp xoay chiều có đồ thị điện áp tức thời phụ thuộc vào thời gian như hình vẽ. Trong đó điện áp cực đại {U_0} và chu kì dòng điện không thay đổi. Khi đóng và mở khóa K thì cường độ dòng điện tức thời trong mạch phụ thuộc vào thời gian như hình vẽ. Giá trị của {I_0}  là:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

+ Khi khóa K mở, mạch gồm R,{\rm{ }}r,{\rm{ }}L,{\rm{ }}C nối tiếp

Từ đồ thị của điện áp, ta có: u = {U_0}.cos\omega t

Từ đồ thị cường độ dòng điện khi K mở ta có phương trình cường độ dòng điện là: i = {I_0}cos\left( {\omega t + {\varphi _i}_1} \right)

Khi t{\rm{ }} = {\rm{ }}0:

\begin{array}{*{20}{l}}{i = 1,5 = \sqrt 3 .\cos {\varphi _{i1}} \Rightarrow {\varphi _{i1}} = \frac{\pi }{6} \Rightarrow \Delta {\varphi _m} = {\varphi _u} - {\varphi _{i1}} = \frac{{ - \pi }}{6}}\\{ \Rightarrow \tan \Delta {\varphi _m} = \frac{{{Z_L} - {Z_C}}}{{R + r}} = \frac{{ - 1}}{{\sqrt 3 }} \Rightarrow {Z_L} - {Z_C} = \frac{{ - 1}}{{\sqrt 3 }}(R + r)}\end{array}

+ Khi K đóng, mạch có r,{\rm{ }}L,{\rm{ }}C nối tiếp

Ta có phương trình cường độ dòng điện là: i = {I_0}.cos\left( {\omega t + {\varphi _{i2}}} \right)

Khi t{\rm{ }} = {\rm{ }}0

\begin{array}{*{20}{l}}{i = 0,5{I_0} = {I_0}.\cos {\varphi _{i2}} \Rightarrow {\varphi _{i2}} = \frac{\pi }{3} \Rightarrow \Delta {\varphi _m} = {\varphi _u} - {\varphi _{i1}} = \frac{{ - \pi }}{3}}\\\begin{array}{l} \Rightarrow \tan \Delta {\varphi _m} = \frac{{{Z_L} - {Z_C}}}{r} =  - \sqrt 3  \Rightarrow {Z_L} - {Z_C} =  - \sqrt 3 r\\ \Rightarrow {Z_L} - {Z_C} =  - \sqrt 3 r = \frac{{ - 1}}{{\sqrt 3 }}(R + r) \Rightarrow R = 2r\end{array}\\{ \Rightarrow \left\{ \begin{array}{l}{Z_2} = \sqrt {{r^2} + {{({Z_L} - {Z_C})}^2}}  = 2r\\{Z_1} = \sqrt {{{(R + r)}^2} + {{({Z_L} - {Z_C})}^2}}  = 2\sqrt 3 r\end{array} \right.}\\{{I_{01}} = \frac{{{U_0}}}{{{Z_1}}};{I_{02}} = \frac{{{U_0}}}{{{Z_2}}} \Rightarrow \frac{{{I_{01}}}}{{{I_{02}}}} = \frac{{{Z_2}}}{{{Z_1}}} = \frac{1}{{\sqrt 3 }} \Rightarrow {I_{02}} = {I_0} = 3A}\end{array}

Câu 10 Trắc nghiệm

Đặt một điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đầu một đoạn mạch như hình vẽ. Khi K đóng, điều chỉnh giá trị biến trở đến giá trị {R_1}  hoặc {R_2} thì công suất tỏa nhiệt trên mạch đều bằng P. Độ lệch pha giữa điện áp tức thời hai đầu mạch và dòng điện trong mạch khi R = {R_1} là {\varphi _1}, khi R = {R_2} là {\varphi _2} , trong đó \left| {{\varphi _1} - {\varphi _2}} \right| = \frac{\pi }{6} . Khi K mở, điều chỉnh giá trị R từ 0  đến rất lớn thì công suất tỏa nhiệt trên biến trở R cực đại bằng \frac{{2P}}{3}, công suất trên cả mạch cực đại bằng  \frac{{2P}}{{\sqrt 3 }}. Hệ số công suất của cuộn dây là:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Khi K đóng, mạch chỉ có R, C mắc nối tiếp.

Khi {R_1},{R_2}  thì {P_1} = {P_2} nên:

\begin{array}{*{20}{l}}{i = 0,5{I_0} = {I_0}.\cos {\varphi _{i2}} \Rightarrow {\varphi _{i2}} = \frac{\pi }{3} \Rightarrow \Delta {\varphi _m} = {\varphi _u} - {\varphi _{i1}} = \frac{{ - \pi }}{3}}\\\begin{array}{l} \Rightarrow \tan \Delta {\varphi _m} = \frac{{{Z_L} - {Z_C}}}{r} =  - \sqrt 3  \Rightarrow {Z_L} - {Z_C} =  - \sqrt 3 r\\ \Rightarrow {Z_L} - {Z_C} =  - \sqrt 3 r = \frac{{ - 1}}{{\sqrt 3 }}(R + r) \Rightarrow R = 2r\end{array}\\{ \Rightarrow {Z_2} = \sqrt {{r^2} + {{({Z_L} - {Z_C})}^2}}  = 2r;{Z_1} = \sqrt {{{(R + r)}^2} + {{({Z_L} - {Z_C})}^2}}  = 2\sqrt 3 r}\\{{I_{01}} = \frac{{{U_0}}}{{{Z_1}}};{I_{02}} = \frac{{{U_0}}}{{{Z_2}}} \Rightarrow \frac{{{I_{01}}}}{{{I_{02}}}} = \frac{{{Z_2}}}{{{Z_1}}} = \frac{1}{{\sqrt 3 }} \Rightarrow {I_{02}} = {I_0} = 3A}\end{array}

Khi K mở thì mạch R, r, L, C nối tiếp Công suất mạch cực đại là:

{P_{\max }} = \frac{{{U^2}}}{{2\left| {{Z_L} - {Z_C}} \right|}} = \frac{{{U^2}}}{{2({R_0} + r)}} = \frac{2}{{\sqrt 3 }}P \Rightarrow {Z_L} = 2{Z_C}

Công suất trên R cực đại: {P_{R\max }} = \frac{{{U^2}}}{{2R}} = \frac{{2P}}{3} \Leftrightarrow {R^2} = {r^2} + {({Z_L} - {Z_C})^2} \Rightarrow r = \frac{{{Z_C}}}{{\sqrt 3 }}

Thay các giá trị tìm được vào tính hệ số công suất cuộn dây: \cos {\varphi _d} = \frac{r}{{\sqrt {{r^2} + {Z_L}^2} }} = \frac{1}{{\sqrt {13} }}

Câu 11 Trắc nghiệm

Lần lượt mắc một điện trở R, một cuộn dây, một tụ điện C vào cùng một nguồn điện ổn định và đo cường đọ dòng điện qua chúng thì được các giá trị ( theo thứ tự ) là 1A,{\rm{ }}1A, và 0A; điện năng tiêu thụ trên R trong thời gian \Delta t khi đó là Q. Sau đó mắc nối tiếp các linh kiện trên cùng với một ampe kế nhiệt lí tưởng vào một nguồn ổn định thứ hai thì số chỉ ampe kế là 1A. Biết nếu xét trong cùng thời gian \Delta t thì: điện năng tiêu thụ trên R khi chỉ mắc nó vào nguồn thứ hai là 4Q; còn khi mắc cuộn dây vào nguồn này thì điện năng tiêu thụ trong thời gian này cũng là Q. Hỏi nếu mắc điện trở R nối tiếp với tụ và ampe kế nhiệt vào nguồn thứ hai thì ampe kế chỉ bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+ Ban đầu cường độ dòng điện qua R. cuộn dây và C lần lượt là 1A,1A,0A, chứng tỏ dòng điện ban đầu là dòng điện không đổi, và cuộn dây có điện trở thuần bằng R sau đó dùng dòng điện xoay chiều.

Điện năng tiêu thụ ban đầu là :  Q = \frac{{{U^2}}}{R}.\Delta t

Điện năng tiêu thụ khi đặt vào dòng điện lúc sau và chỉ có R là:  Q' = \frac{{{U^2}}}{R}\Delta t = 4Q = 4.\frac{{{U^2}}}{R}{\rm{ }} =  > U' = 2U{\rm{ }}

+ Khi cho dòng điện qua cuộn dây ta có: 

\begin{array}{l}Q'' = \frac{{U{'^2}}}{{{{(R)}^2} + Z_L^2}}R.\Delta t = Q = \frac{{{U^2}}}{R}\Delta t\\ \leftrightarrow \frac{{4{U^2}}}{{{R^2} + Z_L^2}} = \frac{{{U^2}}}{R} \to {Z_L} = \sqrt 3 .R\end{array}

Khi mắc cả ba linh kiện vào dòng điện thừ 2 thì cường độ dòng điện là 1A.

Ta có:  \frac{{U'}}{{\sqrt {{{\left( {2R} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{U}{R}{\rm{ }} =  > {Z_C} = {Z_L} = \sqrt 3 R{\rm{ }}

Khi mắc điện trở với tụ vào mạch thứ hai thì cường độ dòng điện là: I = \frac{{U'}}{{\sqrt {{R^2} + Z_C^2} }} = \frac{{2U}}{{2R}} = 1A  

Câu 12 Trắc nghiệm

Cho mạch điện RLC không phân nhánh, cuộn dây có điện trở r. Đặt vào hai đầu đoạn mạch một điện áp xoay chiều có tần số f{\rm{ }} = {\rm{ }}50Hz. Cho điện dung C thay đổi người ta thu được đồ thị liên hệ giữa điện áp hai đầu phần mạch chứa cuộn dây và tụ điện như hình vẽ bên. Điện trở r có giá trị là:  

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+ Ta có biểu thức {U_{rLC}} = \frac{{U\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}{{\sqrt {{{\left( {r + R} \right)}^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}

→ Tại C = 0 thì {Z_C} = \infty , khi đó {U_{rLC}} = U = 87V

→ Tại C = \infty  thì {Z_C} = 0 , khi đó {U_{rLC}} = \frac{{87\sqrt {{r^2} + Z_L^2} }}{{\sqrt {{{\left( {r + R} \right)}^2} + Z_L^2} }} = 36V\left( * \right)

+ Tại C = \frac{{100}}{\pi }\mu F \to {Z_C} = 100\Omega   thì mạch xảy ra cộng hưởng {Z_L} = {Z_C} = 100\Omega   và {U_{rLC}} = {U_{rLC\min }} = 17,4V  \to {U_{rLC}} = \frac{{87r}}{{r + R}} = 17,4 \to R + r = 5r

→ Thay vào phương trình (*) ta tìm được r \approx 50\Omega   

Câu 13 Trắc nghiệm

Cho mạch điện như hình A1, cuộn dây thuần cảm. Điện áp hai đầu đoạn mạch có biểu thức với U không đổi nhưng f có thể thay đổi được. Ta có đồ thị biểu diễn sự phụ thuộc của công suất tiêu thụ trên mạch theo R là đường liền nét khi f = {f_1} và là đường đứt nét khi f = {f_2} . Giá trị của {P_{max}}  gần nhất với giá trị nào sau đây?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+ Ứng với tần số {f_1}  ta có công suất cực đại khi {P_{max}} = \frac{{{U^2}}}{{2{R_0}}} = 100W

+ Ứng với tần số {f_2}  hai giá trị của R cho cùng một công suất là hai nghiệm của phương trình:{P_{1m{\rm{ax}}}}{R^2} - {U^2}R + {({Z_L} - {Z_C})^2}{P_{1m{\rm{ax}}}} = 0

Theo định lý Vi-et ta có:  \left\{ \begin{array}{l}{R_1} + {R_2} = \frac{{{U^2}}}{{{P_{1max}}}} = 2{R_0} \to {R_2} = 40\Omega \\{R_1}{R_2} = {({Z_L} - {Z_C})^2}\end{array} \right.

Công suất cực đại cần tìm: {P_{max}} = \frac{{{U^2}}}{{2\left| {{Z_L} - {Z_C}} \right|}} = \frac{{{U^2}}}{{2{R_0}}} \times \frac{{2{R_0}}}{{\sqrt {{R_1}{R_2}} }} = {P_{1max}}\frac{{{R_0}}}{{\sqrt {{R_1}{R_2}} }} \approx 134W  

Câu 14 Trắc nghiệm

Cho mạch điện như hình vẽ, cuộn dây thuần cảm. Đặt vào hai đầu đoạn mạch điện áp xoay chiều có biểu thức u = 100\sqrt 6 \cos \left( {100\pi t + \varphi } \right)V. Khi K mở hoặc đóng, thì đồ thị cường độ dòng điện qua mạch theo thời gian tương ứng là {i_m}  và {i_d}  được biểu diễn như hình bên. Điện trở các dây nối rất nhỏ. Giá trị của R bằng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Từ đồ thị ta thấy được biểu thức của cường độ dòng điện khi K đóng và mở là:  \left\{ \begin{array}{l}{i_m} = 3\sqrt 2 \cos \left( {\omega t + \frac{\pi }{2}} \right)A\\{i_d} = \sqrt 6 \cos \left( {\omega t} \right)A\end{array} \right.

+ Khi khóa K đóng, mạch điện chỉ gồm R mắc nối tiếp với C

Tổng trở được tính theo công thức:  {Z_{RC}} = \sqrt {{R^2} + Z_C^2} {\rm{}} = \dfrac{{{U_0}}}{{{I_{01}}}} = \dfrac{{100\sqrt 6 }}{{\sqrt 6 }} = 100\Omega (1)

+ Khi khóa K mở, mạch điện gồm ba phần tử R, L, C mắc nối tiếp. Tổng trở được tính theo công thức  Z = \sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} {\rm{}} = \dfrac{{{U_0}}}{{{I_{0m}}}} = \dfrac{{100\sqrt 6 }}{{3\sqrt 2 }} = \dfrac{{100\sqrt 3 }}{3}\Omega (2)

+ Từ biểu thức cường độ {i_m}  và {i_d}  ta thấy rằng hai dòng điện vuông pha với nhau, khi đó ta có: \dfrac{{{Z_C}}}{R}.\dfrac{{{Z_L} - {Z_C}}}{R} = 1 \Leftrightarrow {R^2} = {Z_C}\left( {{Z_L} - {Z_C}} \right)\left( 3 \right)

Thay (3) vào (1) và (2) ta được 

\left\{ {\begin{array}{*{20}{l}} {{Z_C}\left( {{Z_L} - {Z_C}} \right) + Z_C^2 = {{100}^2}} \\ {{Z_C}\left( {{Z_L} - {Z_C}} \right) + {{\left( {{Z_L} - {Z_C}} \right)}^2} = \dfrac{{{{100}^2}.3}}{9}} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}} {{Z_L} = \dfrac{{200}}{{\sqrt 3 }}\Omega } \\ {{Z_C} = 50\sqrt 3 \Omega {\text{}}} \end{array}} \right.

Thay vào (3) suy ra:  R = 50\Omega

Câu 15 Trắc nghiệm

Cho mạch điện xoay chiều như hình vẽ. Điện dung C có giá trị thay đổi được và cuộn dây thuần cảm. Điều chỉnh giá trị của C thì thấy: ở cùng thời điểm, số chỉ của {V_1}  cực đại ({U_{A{M_{{\rm{max}}}}}}) thì số chỉ của {V_1} gấp đôi số chỉ của {V_2} . Hỏi khi số chỉ của {V_2} cực đại ( {U_{N{B_{{\rm{max}}}}}} ) thì số chỉ của {V_2} gấp bao nhiêu lần số chỉ {V_1}? ({V_1} chỉ điện áp trên R, còn {V_2} chỉ điện áp trên C)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Khi {V_1} đạt cực đại thì xảy ra cộng hưởng điện:  {U_{1\max }} = {U_R} = {U_{AB}}{\rm{ }} \Leftrightarrow {U_L} = {U_C}_1 = \frac{1}{2}{U_{AB}} =  > R = 2{Z_L} = 2{Z_{C1}}

Thay đổi để điện áp trên tụ cực đại thì

\begin{array}{l}{U_{C\max }} = \frac{U}{R}.\sqrt {{R^2} + Z_L^2} khi{Z_C} = \frac{{{R^2} + Z_L^2}}{{{Z_L}}}\\I' = \frac{{{U_{C2}}}}{{{Z_{C2}}}} = \frac{{\frac{U}{R}.\sqrt {{R^2} + Z_L^2} }}{{\frac{{{R^2} + Z_L^2}}{{{Z_L}}}}} = \frac{{U.{Z_L}}}{{R.\sqrt {{R^2} + Z_L^2} }} =  > {U_R}^\prime  = I'.R = \frac{{U.{Z_L}}}{{\sqrt {{R^2} + Z_L^2} }} = \frac{U}{{\sqrt 5 }}V\\{U_{C\max }} = \frac{U}{R}.\sqrt {{R^2} + Z_L^2}  = \frac{{U.\sqrt {4Z_L^2 + Z_L^2} }}{{2{Z_L}}} = \frac{{U.\sqrt 5 }}{2}V =  > \frac{{{U_{C\max }}}}{{{U_R}^\prime }} = \frac{{\sqrt 5 }}{2}.\sqrt 5  = 2,5\end{array}

Câu 16 Trắc nghiệm

Đề thi THPT QG - 2020

Đặt điện áp xoay chiều u có giá trị hiệu dụng không đổi và tần số 50 Hz vào hai đầu đoạn mạch gồm điện trở 30\Omega   mắc nối tiếp với cuộn cảm thuần có độ tự cảm L thì cường độ dòng điện trong đoạn mạch là i. Hình bên là một phần đường cong biểu diễn mối liên hệ giữa ip với p = ui. Giá trị của L gần nhất với giá trị nào sau đây? 

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

+ Thời điểm {t_1}: i = 1 \Rightarrow p = ui = 1 \Rightarrow u = 1

+ Thời điểm {t_2}: i = 4 \Rightarrow p = ui = 4 = {p_{max}} \Rightarrow u = 1

Gọi \varphi là góc hợp bởi u; i

2 thời điểm {t_1},{t_2} {u_1} = {u_2} \Rightarrow trục {t_1},{t_2} đối xứng nhau qua trục {U_0}, cùng hợp với {U_0} một góc \alpha

+ Thời điểm {t_2}, p = ui và đạt cực đaij

\Rightarrow trục thời gian {t_2} là phân giác của \left( {{U_0};{I_0}} \right) \Rightarrow \alpha  = \frac{\varphi }{2}

Ta có: \left\{ \begin{array}{l}{i_1} = {I_0}cos\left( {\varphi  + \alpha } \right) = {I_0}cos\left( {\frac{{3\varphi }}{2}} \right)\\{i_2} = {I_0}cos\left( {\varphi  - \alpha } \right) = {I_0}cos\left( {\frac{\varphi }{2}} \right)\end{array} \right. \Rightarrow \frac{{{i_1}}}{{{i_2}}} = \frac{{cos\frac{{3\varphi }}{2}}}{{cos\frac{\varphi }{2}}} = \frac{1}{4} \Rightarrow \frac{\varphi }{2} = 0,448\left( {rad} \right)

Ta có: \tan \varphi  = \frac{{{Z_L}}}{R} \Rightarrow {Z_L} = R.\tan \varphi  \approx 37.496\Omega

Lại có: {Z_L} = L\omega  \Rightarrow L = \frac{{{Z_L}}}{\omega } = \frac{{37,496}}{{100\pi }} = 0,119H