Điện năng được truyền từ nơi phát đến một xưởng sản xuất bằng đường dây một pha với hiệu suất truyền tải là \(90\% \). Ban đầu xưởng sản xuất này có \(90\) máy hoạt động, vì muốn mở rộng quy mô sản xuất nên xưởng đã nhập thêm về một số máy. Hiệu suất truyền tải lúc sau (khi có thêm các máy mới cùng hoạt động) đã giảm đi \(10\% \) so với ban đầu. Coi hao phí điện năng chỉ do toả nhiệt trên đường dây, công suất tiêu thụ điện của các máy hoạt động (kể cả các máy mới nhập về) đều như nhau và hệ số công suất trong các trường hợp đều bằng \(1\). Nếu giữ nguyên điện áp nơi phát thì số máy hoạt động đã được nhập về thêm là:
Trả lời bởi giáo viên
Do hiệu điện thế \(U\) không đổi nên: \(\frac{{\Delta {P_2}}}{{\Delta {P_1}}} = {(\frac{{{P_2}}}{{{P_1}}})^2} \to \frac{{{P_2}}}{{{P_1}}} = 2\)
\({H_1} = 90\% \)
\( \to {P_n} = 0,9{P_1} \to {P_0} = \frac{{{P_n}}}{{90}} = 0,01{P_1}\) (1)
Gọi \(x\) là số máy nhập thêm => công suất khi nhập mới:
\((90 + x).0,01{P_1} = 0,8{P_2} \to {P_2} = \frac{{(90 + x).0,01{P_1}}}{{0,8}}\) (2)
mà \({P_2} = 2{P_1}\) ,
\({\rm{}} \to \frac{{(90 + x).0,01{P_1}}}{{0,8}} = 2{P_1} \to (90 + x) = 160 \to x = 70\)
Hướng dẫn giải:
Sử dụng các công thức trong truyền tải điện năng :
+ Biểu thức tính điện năng hao phí: \(\Delta P = \frac{P}{{{U^2}{\rm{co}}{{\rm{s}}^2}\varphi }}R\)