Đặt điện áp \(u = {U_0}{\rm{cos100}}\pi {\rm{t}}\left( V \right)\) (t tính bằng s) vào đoạn mạch gồm cuộn dây và tụ điện mắc nối tiếp. Cuộn dây có độ tự cảm \(L = \frac{{1,5}}{\pi }H\), điện trở \(r = 50\sqrt 3 \Omega \), tụ điện có điện dung \(C = \frac{{{{10}^{ - 4}}}}{\pi }F\) . Tại thời điểm \({t_1}\), điện áp tức thời giữa hai đầu cuộn dây có giá trị \(150V\), đến thời điểm \({t_1} + \frac{1}{{75}}s\) thì điện áp giữa hai đầu tụ điện cũng bằng \(150V\). Giá trị của \({U_0}\) bằng:
Trả lời bởi giáo viên
Ta có:
\(\begin{array}{l}{Z_L} = \omega L = 150\Omega ;{Z_C} = \dfrac{1}{{\omega C}} = 100\Omega ;r = 50\sqrt 3 \Omega \\Z = 100\Omega ;{Z_d} = \sqrt {{r^2} + {Z_L}^2} = 100\sqrt 3 \end{array}\)
\(\begin{array}{l}i = \dfrac{{{U_0}}}{Z}{\rm{cos}}\left( {\omega t - \dfrac{\pi }{6}} \right) = 0,01{U_0}{\rm{cos}}\left( {\omega t - \dfrac{\pi }{6}} \right)\\{u_d} = {I_0}{{\rm{Z}}_d}{\rm{cos}}\left( {\omega t + \dfrac{\pi }{6}} \right) = {U_0}\sqrt 3 {\rm{cos}}\left( {\omega t + \dfrac{\pi }{6}} \right)\\{u_C} = {I_0}{Z_C}{\rm{cos}}\left( {\omega t - \dfrac{{2\pi }}{3}} \right) = {U_0}{\rm{cos}}\left( {\omega t - \dfrac{{2\pi }}{3}} \right)\end{array}\)
${u_d} = {U_0}\sqrt 3 {\text{cos}}\left( {\omega {t_1} + \dfrac{{\pi {\text{}}}}{6}} \right) = 150V{\text{ }}({\text{1}})$
Tại thời điểm \({t_2} = {t_1} + \dfrac{1}{{75}}s\), ta có: ${u_C} = {U_0}{\text{cos}}\left( {\omega \left( {{t_1} + \dfrac{1}{{75}}} \right) - \dfrac{{2\pi }}{3}} \right) = {U_0}{\text{cos}}\left( {\omega {t_1} + \dfrac{{2\pi }}{3}} \right) = {U_0}\sin \left( {\omega {t_1} + \dfrac{{\pi {\text{}}}}{6}} \right) = 150V{\text{ }}({\text{2}})$
Từ (1) và (2), ta có: ${\left( {\dfrac{{{u_d}}}{{\sqrt 3 }}} \right)^2} + {\left( {{u_C}} \right)^2} = U_0^2 \leftrightarrow \dfrac{{{{150}^2}}}{3} + {150^2} = U_0^2{\rm{ }} \to {U_0} = 100\sqrt 3 {\rm{ }}$
Hướng dẫn giải:
+ Viết phương trình u, i
+ Vận dụng công thức lượng giác