Câu hỏi:
2 năm trước

Đặt điện áp \(u = 200cos\omega t\left( V \right)\) (\(\omega \) thay đổi được) vào hai đầu đoạn mạch mắc nối tiếp gồm cuộn cảm thuần có độ tự cảm $L$, điện trở $R$ và tụ điện có điện dung $C$, với \(C{R^2} < 2L\). Điện áp hiệu dụng giữa hai bản tụ điện và điện áp hiệu dụng hai đầu cuộn cảm lần lượt là \({U_C},{U_L}\)  phụ thuộc vào \(\omega \), chúng được biểu diễn bằng các đồ thị như hình vẽ bên, tương ứng với các đường \({U_C},{U_L}\). Giá trị của \({U_M}\)  trong đồ thị gần nhất với giá trị nào sau đây?

Trả lời bởi giáo viên

Đáp án đúng: a

Khi \(\omega {\rm{ }} = {\rm{ }}0\) thì \({U_C} = U\)

Khi  \(\omega {\rm{}} = {\omega _C} = \sqrt {\dfrac{{2L - {R^2}C}}{{2{L^2}C}}} \)

thì \({U_C}\)  cực đại

 Khi  \(\omega {\rm{}} = {\omega _R} = \sqrt {\dfrac{1}{{LC}}} \)

thì \({U_R}\)  đạt cực đại bằng \(U\)

Khi \(\omega  = 0\) thì \({U_L} = 0\) khi  \(\omega {\rm{}} = {\omega _L} = \sqrt {\dfrac{2}{{2LC - {R^2}C}}} \)

thì \({U_{{L_{max}}}} = {U_M}\)

Đặt  \(n = \dfrac{{{\omega _L}}}{{{\omega _C}}} = \dfrac{{2L}}{{2L - {R^2}C}} = {\rm{}} > \dfrac{1}{n} = 1 - \dfrac{{{R^2}C}}{{2L}} = 1 - \dfrac{{{R^2}}}{{2{Z_L}{Z_C}}};{\left( {\dfrac{U}{{{U_{{L_{max}}}}}}} \right)^2} + {\left( {\dfrac{1}{n}} \right)^2} = {\left( {\dfrac{U}{{{U_{{C_{max}}}}}}} \right)^2} + {\left( {\dfrac{1}{n}} \right)^2} = 1\)

Tại giao điểm của hai đồ thị, ta có \({U_L} = {U_C} = U\) (cộng hưởng ) 

\(\begin{array}{*{20}{l}}
{ = {\text{}} > \dfrac{1}{n} = 1 - \dfrac{{{R^2}}}{{2{Z_L}{Z_C}}} = 1 - \dfrac{{U_R^2}}{{2{U_L}{U_C}}} = 1 - \dfrac{{{U^2}}}{{2.U.U}} = \dfrac{1}{2} = {\text{}} > n = 2} \\
{{U_M} = {U_{{C_{max}}}} = {U_{{L_{max}}}} = \dfrac{{nU}}{{\sqrt {{n^2} - 1} }} = \dfrac{{2.100\sqrt 2 }}{{\sqrt {{2^2} - 1} }} = 163,3(V)}
\end{array}\)

Hướng dẫn giải:

+ Sử dụng biểu thức \(\omega \) biến thiên để \({U_{Cm{\rm{ax}}}}\), khi đó: \({\omega _C} = \sqrt {\dfrac{{2L - {R^2}C}}{{2{L^2}C}}} \)

+  \(\omega  = \dfrac{1}{{\sqrt {LC} }}\) : mạch cộng hưởng \({U_{Rm{\rm{ax}}}}\)

+  \(\omega \) biến thiên để \({U_{L\max }}\), khi đó: \({\omega _L} = \sqrt {\dfrac{2}{{2LC - {R^2}C}}} \)

Câu hỏi khác