Bài tập hay và khó chương 4: Sự tương giao của đường thẳng và parabol

Câu 1 Trắc nghiệm

Tìm \(m\)  để diện tích tam giác \(OAB\)  bằng \(8\) .

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Để ý rằng đường thẳng \(\left( d \right)\) luôn đi qua điểm cố định \(I\left( {0;4} \right)\) nằm trên trục tung. Ngoài ra nếu gọi $A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)$ thì \({x_1}.{x_2} =  - 4 < 0\)

(do \({x_1};{x_2}\) là hai nghiệm của phương trình hoành độ giao điểm \({x^2} - mx - 4 = 0\) ) 

nên hai giao điểm $A,B$ nằm về hai phía trục tung.

Giả sử \({x_1} < 0 < {x_2}\) thì ta có:

\({S_{OAB}} = {S_{OAI}} + {S_{OBI}} = \dfrac{1}{2}AH.OI + \dfrac{1}{2}BK.OI\) với \(H,K\) lần lượt là hình chiếu vuông góc của điểm \(A,B\) trên trục \(Oy\). Ta có \(OI = 4,AH = \left| {{x_1}} \right| =  - {x_1},BK = \left| {{x_2}} \right| = {x_2}\). Suy ra \({S_{OAB}} = 2\left( {{x_2} - {x_1}} \right)\) \( \Rightarrow S_{OAB}^2 = 4{\left( {{x_1} - {x_2}} \right)^2} = 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]\).

Theo định lý Viet ta có: \({x_1} + {x_2} = m,{x_1}{x_2} =  - 4\). Thay vào ta có: $S_{OAB}^2 = 4\left( {{m^2} + 16} \right) = 64 \Leftrightarrow m = 0$.

Câu 2 Trắc nghiệm

Tìm giá trị lớn nhất của \(Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{x_1}^2 + {x_2}^2}}\) .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là: \({x^2} = mx + 4 \Leftrightarrow {x^2} - mx - 4 = 0\) . Ta có \(\Delta  = {m^2} + 16 > 0\), với mọi \(m\) nên phương trình luôn có 2 nghiệm phân biệt, suy ra đường thẳng \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt. Theo định lý Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} =  - 4\end{array} \right.\) 

Ta có $Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}  $\(\Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}}\). 

Ta xét \({m^2} + 8 - \left( {2m + 7} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0;\,\,\,\forall m\)  nên \({m^2} + 8 \ge 2m + 7 \Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}} \le 1\)

Dấu “=’ xảy ra khi \({m^2} + 8 = 2m + 7 \Leftrightarrow {\left( {m - 1} \right)^2} = 0 \Leftrightarrow m = 1\)

Suy ra giá trị lớn nhất của \(Q\) là \(1\)  khi \(m = 1.\)

Câu 3 Trắc nghiệm

Tìm giá trị lớn nhất của \(Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{x_1}^2 + {x_2}^2}}\) .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là: \({x^2} = mx + 4 \Leftrightarrow {x^2} - mx - 4 = 0\) . Ta có \(\Delta  = {m^2} + 16 > 0\), với mọi \(m\) nên phương trình luôn có 2 nghiệm phân biệt, suy ra đường thẳng \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt. Theo định lý Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} =  - 4\end{array} \right.\) 

Ta có $Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}  $\(\Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}}\). 

Ta xét \({m^2} + 8 - \left( {2m + 7} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0;\,\,\,\forall m\)  nên \({m^2} + 8 \ge 2m + 7 \Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}} \le 1\)

Dấu “=’ xảy ra khi \({m^2} + 8 = 2m + 7 \Leftrightarrow {\left( {m - 1} \right)^2} = 0 \Leftrightarrow m = 1\)

Suy ra giá trị lớn nhất của \(Q\) là \(1\)  khi \(m = 1.\)

Câu 4 Trắc nghiệm

Gọi \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\). Tìm giá trị nhỏ nhất của biểu thức \(T = \dfrac{4}{{{x_A} + {x_B}}} + \dfrac{1}{{{x_A}.{x_B}}}\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Theo câu trước ta có 

\({x_A};{x_B}\) là hai nghiệm của phương trình \(a{x^2} - 2x + {a^2} = 0\) 

 Theo định lý Vi et ta có:

\(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\).

Ta có: \(T = 2a + \dfrac{1}{a}\), với $a>0$ theo bất đẳng thức Cô si cho 2 số dương ta có: \(2a + \dfrac{1}{a} \ge 2\sqrt 2 \). Vậy \(\min T = 2\sqrt 2 \) khi \(a = \dfrac{1}{{\sqrt 2 }}\).

Câu 5 Trắc nghiệm

Tìm \(a\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \(A,B\). Khi đó có kết luận gì về vị trí của hai điểm \(A,B.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\left( d \right):2x - y - {a^2} = 0$ $ \Leftrightarrow y = 2x - {a^2}$

Xét phương trình \(a{x^2} = 2x - {a^2}\) \( \Leftrightarrow a{x^2} - 2x + {a^2} = 0\)   (1)

\(\left( d \right)\) cắt \(\left( P \right)\) .tại hai điểm phân biệt \(A,B\) khi (1) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow a < 1\).

Kết hợp với điều kiện $a>0$ ta có \(0 < a < 1\) khi đó (1) có hai nghiệm \({x_A};{x_B}\) ( \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\))  thỏa mãn \(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\)  (hệ thức Vi-ét) suy ra \({x_A};{x_B}\) dương nên \(A,B\) nằm ở bên phải trục \(Oy\).

Câu 6 Trắc nghiệm

Tìm \(a\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \(A,B\). Khi đó có kết luận gì về vị trí của hai điểm \(A,B.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\left( d \right):2x - y - {a^2} = 0$ $ \Leftrightarrow y = 2x - {a^2}$

Xét phương trình \(a{x^2} = 2x - {a^2}\) \( \Leftrightarrow a{x^2} - 2x + {a^2} = 0\)   (1)

\(\left( d \right)\) cắt \(\left( P \right)\) .tại hai điểm phân biệt \(A,B\) khi (1) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow a < 1\).

Kết hợp với điều kiện $a>0$ ta có \(0 < a < 1\) khi đó (1) có hai nghiệm \({x_A};{x_B}\) ( \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\))  thỏa mãn \(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\)  (hệ thức Vi-ét) suy ra \({x_A};{x_B}\) dương nên \(A,B\) nằm ở bên phải trục \(Oy\).

Câu 7 Trắc nghiệm

Tìm giá trị lớn nhất của \(Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{x_1}^2 + {x_2}^2}}\) .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là: \({x^2} = mx + 4 \Leftrightarrow {x^2} - mx - 4 = 0\) . Ta có \(\Delta  = {m^2} + 16 > 0\), với mọi \(m\) nên phương trình luôn có 2 nghiệm phân biệt, suy ra đường thẳng \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt. Theo định lý Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} =  - 4\end{array} \right.\) 

Ta có $Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}  $\(\Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}}\). 

Ta xét \({m^2} + 8 - \left( {2m + 7} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0;\,\,\,\forall m\)  nên \({m^2} + 8 \ge 2m + 7 \Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}} \le 1\)

Dấu “=’ xảy ra khi \({m^2} + 8 = 2m + 7 \Leftrightarrow {\left( {m - 1} \right)^2} = 0 \Leftrightarrow m = 1\)

Suy ra giá trị lớn nhất của \(Q\) là \(1\)  khi \(m = 1.\)

Câu 8 Trắc nghiệm

Tìm \(a\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \(A,B\). Khi đó có kết luận gì về vị trí của hai điểm \(A,B.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\left( d \right):2x - y - {a^2} = 0$ $ \Leftrightarrow y = 2x - {a^2}$

Xét phương trình \(a{x^2} = 2x - {a^2}\) \( \Leftrightarrow a{x^2} - 2x + {a^2} = 0\)   (1)

\(\left( d \right)\) cắt \(\left( P \right)\) .tại hai điểm phân biệt \(A,B\) khi (1) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow a < 1\).

Kết hợp với điều kiện $a>0$ ta có \(0 < a < 1\) khi đó (1) có hai nghiệm \({x_A};{x_B}\) ( \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\))  thỏa mãn \(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\)  (hệ thức Vi-ét) suy ra \({x_A};{x_B}\) dương nên \(A,B\) nằm ở bên phải trục \(Oy\).

Câu 9 Trắc nghiệm

Tìm phương trình đường thẳng \(\left( d \right)\) đi qua điểm \(I\left( {0;1} \right)\) và cắt parabol \((P):\) \(y = {x^2}\) tại hai điểm phân biệt \(M\) và \(N\) sao cho \(MN = 2\sqrt {10} \).

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Đường thẳng \(\left( d \right)\) qua \(I\) với hệ số góc \(a\) có dạng: \(y = ax + 1\)

Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là:  \({x^2} = ax + 1 \Leftrightarrow {x^2} - ax - 1 = 0\)  (1).

Vì \(\Delta  = {a^2} + 4 > 0\) với mọi \(a\), (1)  luôn có hai nghiệm phân biệt nên \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt \(M\left( {{x_1};{y_1}} \right),N\left( {{x_2};{y_2}} \right)\) hay \(M\left( {{x_1};a{x_1} + 1} \right),N\left( {{x_2};a{x_2} + 1} \right)\).

Theo định lý Viet ta có: \({x_1} + {x_2} = a,{x_1}{x_2} =  - 1\). \(MN = 2\sqrt {10} \)\( \Leftrightarrow {\left( {{x_2} - {x_1}} \right)^2} + {\left( {a{x_2} + 1 - a{x_1} - 1} \right)^2} = 40\)\( \Leftrightarrow \left( {{a^2} + 1} \right){\left( {{x_2} - {x_1}} \right)^2} = 40 \Leftrightarrow \left( {{a^2} + 1} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 40\)\( \Leftrightarrow \left( {{a^2} + 1} \right)\left( {{a^2} + 4} \right) = 40 \)$\Leftrightarrow {a^4} + 5{a^2} - 36 = 0 \Leftrightarrow \left( {{a^2} + 9} \right)\left( {{a^2} - 4} \right) = 0$\(\Rightarrow {a^2} = 4 \Rightarrow a =  \pm 2\).

Vậy phương trình đường thẳng cần tìm là \(y = 2x + 1;y =  - 2x + 1.\)

Câu 10 Trắc nghiệm

Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right)\) có phương trình \(y = \dfrac{{ - {x^2}}}{2}\). Gọi \(\left( d \right)\) là đường thẳng đi qua \(I\left( {0; - 2} \right)\) và có hệ số góc \(k\). Đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt $A, B.$ Gọi \(H,K\) theo thứ tự là hình chiếu vuông góc của \(A,B\) trên trục hoành. Khi đó tam giác \(IHK\)  là tam giác

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đường thẳng \(\left( d \right):y = kx - 2\)

Xét phương trình \(\dfrac{{ - {x^2}}}{2} = kx - 2 \Leftrightarrow {x^2} + 2kx - 4 = 0\)   (1).

 Ta có:\(\Delta ' = {k^2} + 4 > 0\) với mọi \(k\), suy ra (1) có hai nghiệm phân biệt.

Vậy \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

Giả sử (1) có hai nghiệm phân biệt \({x_1},{x_2}\)

Suy ra \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)\) thì \(H\left( {{x_1};0} \right),K\left( {{x_2};0} \right)\).

Khi đó \(I{H^2} = x_1^2 + 4,I{K^2} = x_2^2 + 4,K{H^2} = {\left( {{x_1} - {x_2}} \right)^2}\).

Theo định lý Viet thì \({x_1}{x_2} =  - 4\) nên \(I{H^2} + I{K^2} = x_1^2 + x_2^2 + 8 = K{H^2}\).

 Vậy tam giác \(IHK\) vuông tại \(I\).

Câu 11 Trắc nghiệm

Cho Parabol \((P):y = {x^2}\)  và đường thẳng \((d):y = mx + 4\) . Biết đường thẳng \((d)\)  luôn cắt đồ thị \((P)\) tại hai điểm phân biệt \(A,B\) .Gọi \({x_1},{x_2}\)  là hoành độ của các điểm \(A,B.\)

Tìm giá trị lớn nhất của \(Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{x_1}^2 + {x_2}^2}}\) .

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là: \({x^2} = mx + 4 \Leftrightarrow {x^2} - mx - 4 = 0\) . Ta có \(\Delta  = {m^2} + 16 > 0\), với mọi \(m\) nên phương trình luôn có 2 nghiệm phân biệt, suy ra đường thẳng \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt. Theo định lý Viet ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} =  - 4\end{array} \right.\) 

Ta có $Q = \dfrac{{2\left( {{x_1} + {x_2}} \right) + 7}}{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}  $\(\Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}}\). 

Ta xét \({m^2} + 8 - \left( {2m + 7} \right) = {m^2} - 2m + 1 = {\left( {m - 1} \right)^2} \ge 0;\,\,\,\forall m\)  nên \({m^2} + 8 \ge 2m + 7 \Rightarrow Q = \dfrac{{2m + 7}}{{{m^2} + 8}} \le 1\)

Dấu “=’ xảy ra khi \({m^2} + 8 = 2m + 7 \Leftrightarrow {\left( {m - 1} \right)^2} = 0 \Leftrightarrow m = 1\)

Suy ra giá trị lớn nhất của \(Q\) là \(1\)  khi \(m = 1.\)

Câu 12 Trắc nghiệm

Cho Parabol \((P):y = {x^2}\)  và đường thẳng \((d):y = mx + 4\) . Biết đường thẳng \((d)\)  luôn cắt đồ thị \((P)\) tại hai điểm phân biệt \(A,B\) .Gọi \({x_1},{x_2}\)  là hoành độ của các điểm \(A,B.\)

Tìm \(m\)  để diện tích tam giác \(OAB\)  bằng \(8\) .

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Để ý rằng đường thẳng \(\left( d \right)\) luôn đi qua điểm cố định \(I\left( {0;4} \right)\) nằm trên trục tung. Ngoài ra nếu gọi $A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)$ thì \({x_1}.{x_2} =  - 4 < 0\)

(do \({x_1};{x_2}\) là hai nghiệm của phương trình hoành độ giao điểm \({x^2} - mx - 4 = 0\) ) 

nên hai giao điểm $A,B$ nằm về hai phía trục tung.

Giả sử \({x_1} < 0 < {x_2}\) thì ta có:

\({S_{OAB}} = {S_{OAI}} + {S_{OBI}} = \dfrac{1}{2}AH.OI + \dfrac{1}{2}BK.OI\) với \(H,K\) lần lượt là hình chiếu vuông góc của điểm \(A,B\) trên trục \(Oy\). Ta có \(OI = 4,AH = \left| {{x_1}} \right| =  - {x_1},BK = \left| {{x_2}} \right| = {x_2}\). Suy ra \({S_{OAB}} = 2\left( {{x_2} - {x_1}} \right)\) \( \Rightarrow S_{OAB}^2 = 4{\left( {{x_1} - {x_2}} \right)^2} = 4\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]\).

Theo định lý Viet ta có: \({x_1} + {x_2} = m,{x_1}{x_2} =  - 4\). Thay vào ta có: $S_{OAB}^2 = 4\left( {{m^2} + 16} \right) = 64 \Leftrightarrow m = 0$.

Câu 13 Trắc nghiệm

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right):2x - y - {a^2} = 0\) và parabol \(\left( P \right):y = a{x^2}\) \((a > 0)\).

Tìm \(a\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt \(A,B\). Khi đó có kết luận gì về vị trí của hai điểm \(A,B.\)

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có $\left( d \right):2x - y - {a^2} = 0$ $ \Leftrightarrow y = 2x - {a^2}$

Xét phương trình \(a{x^2} = 2x - {a^2}\) \( \Leftrightarrow a{x^2} - 2x + {a^2} = 0\)   (1)

\(\left( d \right)\) cắt \(\left( P \right)\) .tại hai điểm phân biệt \(A,B\) khi (1) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow a < 1\).

Kết hợp với điều kiện $a>0$ ta có \(0 < a < 1\) khi đó (1) có hai nghiệm \({x_A};{x_B}\) ( \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\))  thỏa mãn \(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\)  (hệ thức Vi-ét) suy ra \({x_A};{x_B}\) dương nên \(A,B\) nằm ở bên phải trục \(Oy\).

Câu 14 Trắc nghiệm

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \(\left( d \right):2x - y - {a^2} = 0\) và parabol \(\left( P \right):y = a{x^2}\) \((a > 0)\).

Gọi \({x_A},{x_B}\) là hoành độ của \(A\) và \(B\). Tìm giá trị nhỏ nhất của biểu thức \(T = \dfrac{4}{{{x_A} + {x_B}}} + \dfrac{1}{{{x_A}.{x_B}}}\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Theo câu trước ta có 

\({x_A};{x_B}\) là hai nghiệm của phương trình \(a{x^2} - 2x + {a^2} = 0\) 

 Theo định lý Vi et ta có:

\(\left\{ \begin{array}{l}{x_A} + {x_B} = \dfrac{2}{a} > 0\\{x_A}.{x_B} = a > 0\end{array} \right.\).

Ta có: \(T = 2a + \dfrac{1}{a}\), với $a>0$ theo bất đẳng thức Cô si cho 2 số dương ta có: \(2a + \dfrac{1}{a} \ge 2\sqrt 2 \). Vậy \(\min T = 2\sqrt 2 \) khi \(a = \dfrac{1}{{\sqrt 2 }}\).

Câu 15 Trắc nghiệm

Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = mx + 1\). Gọi \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\) là các giao điểm của \(\left( d \right)\) và \(\left( P \right)\). Tìm \(m\)  để biểu thức \(M = \left( {{y_1} - 1} \right)\left( {{y_2} - 1} \right)\) đạt giá trị lớn nhất.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Phương trình hoành độ giao điểm của đường thẳng và Parabol là: \({x^2} = mx + 1 \Leftrightarrow {x^2} - mx - 1 = 0\)   (1)

\(\Delta  = {m^2} + 4 > 0\) với mọi \(m\) nên (1) có hai nghiệm phân biệt, suy ra \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\) với \({x_1};{x_2}\)  là hai nghiệm của phương trình (1).

Theo định lý Viet, ta có: \({x_1} + {x_2} = m;{x_1}{x_2} =  - 1\)

Vì \(A;B \in \left( P \right) \Rightarrow {y_1} = x_1^2;{y_2} = x_2^2\).

Ta có 

$M = \left( {{y_1} - 1} \right)\left( {{y_2} - 1} \right) $$= \left( {x_1^2 - 1} \right)\left( {x_2^2 - 1} \right)$$ = x_1^2x_2^2 - \left( {x_1^2 + x_1^2} \right) + 1$

$ = x_1^2x_2^2 + 2{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 1$ \( = 1 - 2 - {m^2} + 1 =  - {m^2} \le 0\) 

Vậy \(\max M = 0\) khi \(m = 0\).

Câu 16 Trắc nghiệm

Trong mặt phẳng tọa độ \(Oxy\) cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y =  - \dfrac{2}{3}\left( {m + 1} \right)x + \dfrac{1}{3}\) (\(m\) là tham số).  Trong trường hợp \(\left( P \right)\) và \(\left( d \right)\) cắt nhau tại hai điểm phân biệt có hoành độ giao điểm là \({x_1},{x_2}\). Đặt \(f\left( x \right) = {x^3} + \left( {m + 1} \right){x^2} - x\) khi đó

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét phương trình hoành độ giao điểm của \(\left( d \right)\)  và \(\left( P \right)\) ta có

\({x^2} = \dfrac{{ - 2\left( {m + 1} \right)}}{3} + \dfrac{1}{3} \) \(\Leftrightarrow 3{x^2} + 2\left( {m + 1} \right)x - 1 = 10\,\,\,\left( 1 \right)\)

Ta thấy phương trình \(\left( 1 \right)\) có hệ số \(a\) và \(c\) trái dấu nên luôn có hai nghiệm phân biệt mọi \(m\) nên \(\left( P \right)\) và \(\left( d \right)\) luôn cắt nhau tại hai điểm phân biệt với mọi \(m\).

Theo hệ thức Viet: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - 2\left( {m + 1} \right)}}{3}\\{x_1}{x_2} = \dfrac{{ - 1}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m + 1 = \dfrac{{ - 3\left( {{x_1} + {x_2}} \right)}}{2}\\3{x_1}{x_2} =  - 1\end{array} \right.\)

Vì \(f\left( x \right) = {x^3} + \left( {m + 1} \right){x^2} - x\) 

nên ta có: \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) \)\(= x_1^3 - x_2^3 + \left( {m + 1} \right)\left( {x_1^2 - x_2^2} \right) - {x_1} + {x_2}\)

\( \Rightarrow 2\left( {f\left( {{x_1}} \right) - f\left( {{x_2}} \right)} \right) \)\(= 2x_1^3 - 2x_2^3 - 3\left( {{x_1} + {x_2}} \right)\left( {x_1^2 - x_2^2} \right) - 2{x_1} + 2{x_2}\)  ( vì  \(m + 1 = \dfrac{{ - 3}}{2}\left( {{x_1} + {x_2}} \right)\)  )

\( =  - x_1^3 + x_2^3 + 3{x_1}{x_2}\left( {{x_2} - {x_1}} \right) - 2\left( {{x_1} - {x_2}} \right) \)

\(=  - x_1^3 + x_2^3 + \left( {{x_1} - {x_2}} \right) - 2\left( {{x_1} - {x_2}} \right)\)

\( =  - \left( {x_1^3 - x_2^3 - 3{x_1}{x_2}\left( {{x_1} - {x_2}} \right)} \right) \)\(= \left[ {\left( {{x_1} - {x_2}} \right)\left( {x_1^2 + x_2^2 - 2{x_1}{x_2}} \right)} \right] \)\(=  - {\left( {{x_1} - {x_2}} \right)^3}\).

Nên \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \dfrac{{ - 1}}{2}{\left( {{x_1} - {x_2}} \right)^3}\)

Câu 17 Trắc nghiệm

Trong mặt phẳng \(Oxy\)  cho đường thẳng \(\left( d \right):\,y = kx + \dfrac{1}{2}\)  và parabol \(\left( P \right):y = \dfrac{1}{2}{x^2}.\)  Giả sử đường thẳng \(\left( d \right)\)  cắt parabol \(\left( P \right)\)  tại hai điểm phân biệt \(A\)  và \(B\). Tọa độ trung điểm \(M\) của đoạn thẳng \(AB\) luôn thỏa mãn phương trình nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét phương trình hoành độ giao điểm của \(\left( d \right)\)  và \(\left( P \right):\,\,\,\dfrac{1}{2}{x^2} = kx + \dfrac{1}{2}\)

\( \Leftrightarrow {x^2} - 2kx - 1 = 0\)\(\left( * \right)\) . Nhận thấy \(a = 1;c =  - 1\)  trái dấu nhau nên phương trình \(\left( * \right)\) luôn có hai nghiệm phân biệt hay  đường thẳng \(\left( d \right)\)  cắt parabol \(\left( P \right)\)  tại hai điểm phân biệt \(A\)  và \(B\) với mọi \(k.\)

Gọi \(A\left( {{x_A};{y_A}} \right);B\left( {{x_B};{y_B}} \right)\)  thì \({x_A};{x_B}\) là hai nghiệm của phương trình \(\left( * \right)\)  và \({y_A} = k{x_A} + \dfrac{1}{2};{y_B} = k{x_B} + \dfrac{1}{2}\)

Tọa độ trung điểm \(M\) của đoạn \(AB\) là \(\left\{ \begin{array}{l}{x_M} = \dfrac{{{x_A} + {x_B}}}{2}\\{y_M} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{k\left( {{x_A} + {x_B}} \right) + 1}}{2}\end{array} \right.\)

Theo hệ thức Vi-ét ta có:\({x_A} + {x_B} = 2k\)  nên \(\left\{ \begin{array}{l}{x_M} = \dfrac{{{x_A} + {x_B}}}{2}\\{y_M} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{k\left( {{x_A} + {x_B}} \right) + 1}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_M} = k\\{y_M} = {k^2} + \dfrac{1}{2}\end{array} \right.\)

\( \Rightarrow {y_M} = x_M^2 + \dfrac{1}{2}\)

Vậy tọa độ điểm \(M\)  luôn thỏa mãn phương trình \(y = {x^2} + \dfrac{1}{2}.\)

Câu 18 Trắc nghiệm

Trên parabol \(\left( P \right):y = {x^2}\)  ta lấy ba điểm phân biệt \(A\left( {a;{a^2}} \right);B\left( {b;{b^2}} \right);C\left( {c;{c^2}} \right)\)  thỏa mãn \({a^2} - b = {b^2} - c = {c^2} - a.\) Hãy tính tích \(T = \left( {a + b + 1} \right)\left( {b + c + 1} \right)\left( {c + a + 1} \right)\)

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Từ đề bài \({a^2} - b = {b^2} - c = {c^2} - a.\)

suy ra \({a^2} - {b^2} = b - c\)  nên \(a + b = \dfrac{{b - c}}{{a - b}}\)\( \Rightarrow a + b + 1 = \dfrac{{b - c}}{{a - b}} + 1 = \dfrac{{a - c}}{{a - b}}\)

Tương tự ta có \(b + c + 1 = \dfrac{{b - a}}{{b - c}};\,c + a + 1 = \dfrac{{c - b}}{{c - a}}\)

Vậy \(T = \dfrac{{a - c}}{{a - b}}.\dfrac{{b - a}}{{b - c}}.\dfrac{{c - b}}{{c - a}} =  - 1\)

Câu 19 Trắc nghiệm

Cho parabol \(\left( P \right):y = \dfrac{1}{4}{x^2}\) và đường thẳng \(d:y = \dfrac{{11}}{8}x - \dfrac{3}{2}.\) Gọi \(A,B\) là các giao điểm của \(\left( P \right)\) và \(d.\)  Tìm tọa độ điểm \(C\) trên trục tung sao cho \(CA + CB\) có giá trị nhỏ nhất.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Hoành độ của \(A\) và \(B\) là nghiệm của phương trình: \(\dfrac{1}{4}{x^2} = \dfrac{{11}}{8}x - \dfrac{3}{2}.\)

Phương trình này có hai nghiệm: \(x = 4\) và \(x = \dfrac{3}{2}.\)

Suy ra \(A\left( {4;4} \right),B\left( {\dfrac{3}{2};\dfrac{9}{{16}}} \right).\)

Dễ thấy hai điểm \(A,B\) cùng nằm về một phía so với trục tung ) (do cùng có hoành độ dương).

Lấy điểm \(A'\left( { - 4;4} \right)\) đối xứng với \(A\) qua trục tung.

Khi đó \(CA + CB = CA' + CB \ge A'B\), nên \(CA + CB\) đạt giá trị nhỏ nhất khi và chỉ khi \(A',C,B\) thẳng hàng, tức là khi \(C\) là giao điểm của đường thẳng \(A'B\) với trục tung.

Phương trình đường thẳng \(d'\) đi qua \(A'\) và \(B\) có dạng \(y = ax + b.\)

Ta có hệ \(\left\{ \begin{array}{l}4 =  - 4a + b\\\dfrac{9}{{16}} = \dfrac{3}{2}a + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \dfrac{5}{8}\\b = \dfrac{3}{2}\end{array} \right..\) Suy ra \(d':y =  - \dfrac{5}{8}x + \dfrac{3}{2}.\)

Suy ra giao điểm của $(d')$ với trục tung có hoành độ $x=0 \Rightarrow y=\dfrac{3}{2}$

Vậy \(C\left( {0;\dfrac{3}{2}} \right).\)

Câu 20 Trắc nghiệm

Trong mặt phẳng Oxy, cho Parabol \(\left( P \right):y = \dfrac{1}{4}{x^2}\) và đường thẳng \(\left( d \right):x - 2y + 12 = 0\)

Gọi giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là \(A,B.\)  Tìm tọa độ điểm C nằm trên \(\left( P \right)\) sao cho tam giác $ABC$ vuông tại C.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\left( d \right):y = \dfrac{1}{2}x + 6\).

Phương trình hoành độ giao điểm \(\dfrac{1}{4}{x^2} = \dfrac{1}{2}x + 6 \Leftrightarrow \left[ \begin{array}{l}x = 6 \Rightarrow y = 9\\x =  - 4 \Rightarrow y = 4\end{array} \right.\).

Vậy 2 giao điểm \(A\left( {6;9} \right),\,\,B\left( { - 4;4} \right)\).

Gọi \(C\left( {c\,\,;\,\,\dfrac{1}{{\,4}}{c^2}} \right) \in \left( P \right)\) \( (c \ne 6,\,\,c \ne  - 4)\)  là điểm cần tìm.

Ta có \(A{B^2} = 125\) ;  \(A{C^2} \)\(= {\left( {c - 6} \right)^2} + {\left( {\dfrac{1}{4}{c^2} - 9} \right)^2} \)\(= \dfrac{1}{{16}}{c^4} - \dfrac{7}{2}{c^2} - 12c + 117\) ;

\(B{C^2} = {\left( {c + 4} \right)^2} + {\left( {\dfrac{1}{4}{c^2} - 4} \right)^2} \)\(= \dfrac{1}{{16}}{c^4} - {c^2} + 8c + 32\) .

Tam giác \(ABC\) vuông tại C khi và chỉ khi \(A{B^2} = A{C^2} + B{C^2}\)

\( \Leftrightarrow 125 = \dfrac{1}{{16}}{c^4} - \dfrac{7}{2}{c^2} - 12c + 117 + \dfrac{1}{{16}}{c^4} - {c^2} + 8c + 32\)\( \Leftrightarrow \dfrac{1}{8}{c^4} - \dfrac{9}{2}{c^2} - 4c + 24 = 0 \)\(\Leftrightarrow \dfrac{1}{8}{c^4} - \dfrac{1}{4}{c^3} + \dfrac{1}{4}{c^3} - \dfrac{1}{2}{c^2} - 4{c^2} + 8c - 12c + 24 = 0\)\( \Leftrightarrow \dfrac{1}{8}{c^3}\left( {c - 2} \right) + \dfrac{1}{4}{c^2}\left( {c - 2} \right) - 4\left( {c - 2} \right) - 12\left( {c - 2} \right) = 0\)\( \Leftrightarrow \left( {c - 2} \right)\left( {\dfrac{1}{8}{c^3} + \dfrac{1}{4}{c^2} - 4c - 12} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}c - 2 = 0\\\dfrac{1}{8}{c^3} + \dfrac{1}{4}{c^2} - 4c - 12 = 0\end{array} \right.\)

$ \Leftrightarrow \left[ \begin{array}{l}
c = 2\\
\dfrac{1}{8}\left( {c - 6} \right)\left( {{c^2} + 8c + 16} \right) = 0
\end{array} \right.$

\( \Leftrightarrow \left[ \begin{array}{l}c = 2\,\,\,\,\,\,\left( n \right)\\c =  - 4\,\,\,\left( l \right)\\c = 6\,\,\,\,\,\,\left( l \right)\end{array} \right.\) .

Vậy \(C\left( {2;1} \right)\) là điểm thỏa đề bài.