Số đo cung lớn \(BnC\) trong hình bên là:
Ta có tổng số đo cung nhỏ \(BmC\) và số đo cung lớn \(BnC\) là \({360^0}.\)
Mặt khác số đo cung nhỏ \(BmC = {80^0}.\) Từ đó ta suy ra số đo cung lớn \(BnC\) là:
\({360^0} - {80^0} = {280^0}.\)
Khi \(CD\) thay đổi. Giá trị nhỏ nhất của \(EF\) theo \(R\) là:
\(B\) thuộc đường tròn $(O)$ đường kính \(CD.\) Suy ra \(\widehat {DBC} = {90^0}.\)
Xét \(\Delta EBF\) có \(\widehat {EBF} = {90^0},\,BA \bot EF \Rightarrow AE.AF = A{B^2}\).
Theo bất đẳng thức Cô-si cho \(\left( {AE,AF} \right)\) ta có
\(EF = AE + AF \ge 2\sqrt {AE.AF} = 2\sqrt {A{B^2}} = 2AB = 4R.\)
Vậy giá trị nhỏ nhất của \(EF\) là \(4R.\) đạt được khi \(CD \bot AB.\)
Tứ giác \(DCEF\) là
Xét \(\left( O \right)\) có \(AB;CD\) là các đường kính nên \(\widehat {CBD} = 90^\circ \)
Xét tam giác \(BCD\) vuông tại \(B\) có \(\widehat {BCD} + \widehat {BDC} = 90^\circ \) mà \(\widehat {OBD} = \widehat {ODB}\) (do \(\Delta OBD\) cân tại \(O\) )
Nên \(\widehat {BCD} + \widehat {OBD} = 90^\circ \Rightarrow \widehat {BCD} = 90^\circ - \widehat {OBD}\) (1)
Xét tam giác \(ABF\) vuông tại \(A\) (vì $EF$ là tiếp tuyến của $(O)$) có \(\widehat {BFA} = 90^\circ - \widehat {ABF}\) (2)
Từ (1) và (2) suy ra \(\widehat {BCD} = \widehat {DFA}\)
Do đó tứ giác \(DCEF\) là tứ giác nội tiếp (dấu hiệu góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó)
Tứ giác \(DCEF\) là
Xét \(\left( O \right)\) có \(AB;CD\) là các đường kính nên \(\widehat {CBD} = 90^\circ \)
Xét tam giác \(BCD\) vuông tại \(B\) có \(\widehat {BCD} + \widehat {BDC} = 90^\circ \) mà \(\widehat {OBD} = \widehat {ODB}\) (do \(\Delta OBD\) cân tại \(O\) )
Nên \(\widehat {BCD} + \widehat {OBD} = 90^\circ \Rightarrow \widehat {BCD} = 90^\circ - \widehat {OBD}\) (1)
Xét tam giác \(ABF\) vuông tại \(A\) (vì $EF$ là tiếp tuyến của $(O)$) có \(\widehat {BFA} = 90^\circ - \widehat {ABF}\) (2)
Từ (1) và (2) suy ra \(\widehat {BCD} = \widehat {DFA}\)
Do đó tứ giác \(DCEF\) là tứ giác nội tiếp (dấu hiệu góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó)
Kẻ đường kính \(AK\) của đường tròn \(\left( {O;R} \right).\) Khi đó \(BHCK\) là:
Theo giả thiết ta có \(CF\) là đường cao của \(\Delta ABC\) nên $AF \bot CF\,\left( 1 \right).$ Mặt khác \(AK\) là đường kính của \(\left( O \right)\) nên theo tính chất của góc nội tiếp chắn nửa đường tròn ta suy ra $\widehat {ABK} = {90^0} \Rightarrow BK \bot AB\,\,\left( 2 \right).$
Từ \(\left( 1 \right),\,\left( 2 \right)\) suy ra \(HC//BK\,\,\left( 3 \right).\)
Chứng minh tương tự ta có \(BH//CK\,\,\left( 4 \right).\)
Từ \(\left( 3 \right),\,\left( 4 \right)\) ta nhận được \(BHCK\) là hình bình hành.
Chọn kết luận sai:
Theo giả thiết ta có \(CF,\,BE\) là các đường cao của tam giác \(ABC\)
nên \(CF \bot AB,\,BE \bot AC.\) Do đó \(\widehat {BFC} = {90^0},\,\widehat {BEC} = {90^0}.\)
Theo dấu hiệu nhận biết tứ giác nội tiếp ta suy ra \(BFEC\) là tứ giác nội tiếp nên C đúng.
\( \Rightarrow \widehat {AFE} = \widehat {ACB}\) (cùng bù với \(\widehat {BFE}\))
Xét hai tam giác $AEF$ và \(ABC\) có \(\widehat A\) chung; \(\widehat {AFE} = \widehat {ACB}\left( {cmt} \right) \Rightarrow \Delta AEF \backsim \Delta ABC\left( {g.g} \right)\) nên B đúng.
Lại có \(\widehat {HEC} + \widehat {HDC} = {90^0} + {90^0} = {180^0}\) nên tứ giác \(CDHE\) là tứ giác nội tiếp nên D đúng.
Chọn kết luận sai:
Theo giả thiết ta có \(CF,\,BE\) là các đường cao của tam giác \(ABC\)
nên \(CF \bot AB,\,BE \bot AC.\) Do đó \(\widehat {BFC} = {90^0},\,\widehat {BEC} = {90^0}.\)
Theo dấu hiệu nhận biết tứ giác nội tiếp ta suy ra \(BFEC\) là tứ giác nội tiếp nên C đúng.
\( \Rightarrow \widehat {AFE} = \widehat {ACB}\) (cùng bù với \(\widehat {BFE}\))
Xét hai tam giác $AEF$ và \(ABC\) có \(\widehat A\) chung; \(\widehat {AFE} = \widehat {ACB}\left( {cmt} \right) \Rightarrow \Delta AEF \backsim \Delta ABC\left( {g.g} \right)\) nên B đúng.
Lại có \(\widehat {HEC} + \widehat {HDC} = {90^0} + {90^0} = {180^0}\) nên tứ giác \(CDHE\) là tứ giác nội tiếp nên D đúng.
Cho hình vẽ ở bên. Khi đó mệnh đề đúng là:
Góc \(\widehat {AMD}\) là góc có đỉnh bên trong đường tròn chắn cung \(AD\) và cung \(BC\) nên ta có
\(\widehat {AMD} = \)\(\dfrac{1}{2}\) ( sđ\(\overparen{AnD} + \) sđ\(\overparen{CpB}\))
Cho tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right).\) Biết \(\widehat {BOD} = {130^0}\) thì số đo \(\widehat {BAD}\) là:
Ta có: \(\widehat {BOD} = {130^0} \Rightarrow sđ\,\overparen{BD} = {130^0}\).
Do đó \(\widehat {BAD} = \dfrac{1}{2}sđ\overparen{BD} = {65^0}\) (góc nội tiếp bằng một nửa số đo của cung bị chắn)
Cho hình vẽ bên. Mệnh đề nào sau đây là sai.
Ta có \(\widehat {AMB} = \widehat {ANB}\) vì hai góc nội tiếp cùng chắn cung \(AB.\)
Ta lại có $\widehat {AMB} = \dfrac{1}{2}\widehat {AOB},\widehat {\,\,ANB} = \dfrac{1}{2}\widehat {AOB}$ ( mối liên hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung \(AB)\)
Cho hình vẽ (hai đường tròn có tâm là \(B,C \) và điểm \(B\) nằm trên đường tròn tâm \(C\)). Biết $\widehat {MAN} = {20^0}.$
Khi đó \(\widehat {PCQ} = ?\)
Ta nhận thấy \(\widehat {MAN}\) nội tiếp đường tròn tâm \(B\), chắn cung nhỏ \(MN\) của đường tròn \(\left( B \right)\) nên \(\widehat {MAN} = \dfrac{1}{2}\widehat {MBN} = {20^0} \Rightarrow \widehat {MBN} = {40^0} \Rightarrow \widehat {PBQ} = {40^0}.\)
Ta lại có \(\widehat {PBQ}\) là góc nội tiếp đường tròn tâm \(C\) và \(\widehat {PCQ}\) là góc ở tâm của \(\left( C \right)\) nên
$\widehat {PBQ} = \dfrac{1}{2}\widehat {PCQ} \Rightarrow \widehat {PCQ} = 2\widehat {PBQ} = {80^0}.$
Vậy \(\widehat {PCQ} = {80^0}.\)
Cho đường tròn \(\left( O \right)\) Trên \(\left( O \right)\) lấy ba điểm \(A,B,D\) sao cho \(\widehat {AOB} = {120^0},\,\,AD = BD.\)
Khi đó \(\Delta ABD\) là:
Từ mối liên hệ về số đo góc ở tâm và số đo góc nội tiếp ta có
$\widehat {ADB} = \dfrac{1}{2}\widehat {AOB} = \dfrac{1}{2}{.120^0} = {60^0}.$
\(\Delta ABD\) có \(AD = BD\) nên cân tại \(D,\) có một góc $\widehat {ADB}=60^0$ nên \(\Delta ABD\) là tam giác đều.
Cho hai đường tròn \(\left( {O;R} \right)\) và \(\left( {O';R'} \right)\) cắt nhau tại \(A\) và \(B.\) Vẽ cát tuyến \(CAD\) vuông góc với \(AB\left( {C \in \left( O \right),D \in \left( {O'} \right)} \right)\) . Tia \(CB\) cắt \(\left( {O'} \right)\) tại \(E,\) tia \(DB\) cắt \(\left( O \right)\) tại \(F.\) Khi đó
Theo giả thiết ta có \(CD \bot AB\) nên \(\widehat {CAB} = {90^0}.\) Mà \(\widehat {CAB} = \dfrac{1}{2}sđ\overparen{BC} \Rightarrow sđ \overparen{BC} = {180^0}.\)
Vậy ba điểm \(B,\,O,\,C\) thẳng hàng.
Chứng minh tương tự ta nhận được \(B,\,\,O',\,D\) thẳng hàng.
Trong \(\left( O \right)\) các góc \(\widehat {CAF},\,\widehat {CBF}\) là các góc nội tiếp cùng chắn chung \(CF\) nên $\widehat {CAF} = \,\widehat {CBF}.\,\left( 1 \right)$
Trong \(\left( {O'} \right)\) các góc \(\widehat {DAE},\,\widehat {DBE}\) là các góc nội tiếp cùng chắn chung \(DE\) nên \(\widehat {DAE} = \widehat {DBE}\,\left( 2 \right).\)
Mặt khác \(\widehat {CBF},{\kern 1pt} \widehat {DBE}\) là các góc đối đỉnh, do đó \(\widehat {CBF} = \widehat {DBE}\,\,\left( 3 \right).\)
Từ \(\left( 1 \right),\,\left( 2 \right),\,\left( 3 \right)\) ta suy ra \(\widehat {CAF} = \widehat {DAE}.\)
Cho đường tròn \(\left( {O;R} \right)\) và một điểm \(M\) bên trong đường tròn đó. Qua \(M\) kẻ hai dây cung \(AB\) và \(CD\) vuông góc với nhau (\(C\) thuộc cung nhỏ \(AB\)). Vẽ đường kính \(DE.\) Khi đó tứ giác \(ABEC\) là:
Do \(DE\) là đường kính của \(\left( {O;R} \right)\) nên \(\widehat {DCE} = {90^0}\) (góc nội tiếp chắn nửa đường tròn).
Do đó \(CD \bot CE.\) Mặt khác theo giả thiết ta có \(CD \bot AB.\)
Do đó \(AB//CE.\) Vậy tứ giác \(ABEC\) là hình thang \(\left( 1 \right).\)
Mặt khác các dây \(CE,AB\) là hai dây song song của \(\left( O \right)\) chắn hai cung \(AC\) và \(BE\) nên
Cung \(AC = \) cung \(BE \) \( \Rightarrow AC=BE\,\,\,\left( 2 \right).\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(ABEC\) là hình thang cân.
Cho hình vẽ dưới đây.
Khi đó mệnh đề đúng là:
Ta áp dụng công thức về góc có đỉnh ở trong và ở ngoài đường tròn bị chắn bởi cung ta nhận được
\(\left\{ \begin{array}{l}\widehat {AQB} = \dfrac{1}{2}\left( {sđ\overparen{AeB} + sđ\overparen{CdM}} \right)\,\,\\\widehat {ANB} = \dfrac{1}{2}\left( {sđ\overparen{AeB} - sđ\overparen{CdM}} \right)\,\,\end{array} \right. \)\(\Rightarrow \widehat {AQB} = \dfrac{1}{2}\left( {sđ\overparen{AeB} + sđ\overparen{CdM}} \right) > \dfrac{1}{2}\left( {sđ\overparen{AeB} - sđ\overparen{CdM}} \right) = \widehat {ANB}.\)
Cho tam giác \(ABC\) cân tại \(A\) nội tiếp đường tròn tâm \(O.\) Trên \(\left( O \right)\) lấy điểm \(D\) thuộc cung \(AC\). Gọi \(E = AC \cap BD,\,\,F = AD \cap BC.\) Khi đó mệnh đề đúng là:
\(\Delta ABC\) cân tại \(A\) nên \(AB = AC\) suy ra \(sđ\,\overparen{AB} = sđ\,\overparen{AC}.\)
Áp dụng kết quả trên và theo tính chất của góc ngoài đường tròn ta có:
$\widehat {AFB} = \dfrac{1}{2}\left( {sđ\,\overparen{AB} - sđ\,\overparen{CD}} \right) = \dfrac{1}{2}\left( {sđ\,\overparen{AC} - sđ\,\overparen{CD}} \right) = \dfrac{1}{2}sđ\,\overparen{AD}.$
Mặt khác theo tính chất góc nội tiếp ta có \(\widehat {ABD} = \dfrac{1}{2}sđ\,\overparen{AD}.\)
Do đó \(\widehat {AFB} = \widehat {ABD}.\)
Cho tam giác \(ABC\) nội tiếp đường tròn tâm \(O.\) Gọi $P,\,Q,R$ lần lượt là giao điểm của các tia phân giác trong góc \(A,\,B,\,C\) với đường tròn. Giả sử rằng \(S = AP \cap RQ.\) Khi đó:
Ta có tia phân giác \(AP\) chia đôi cung \(BC\) thành hai cung bằng nhau, hay\(sđ\overparen{BP} = sđ\overparen{CP}=\dfrac{1}{2}sđ\,\overparen{BC}.\)
Tương tự ta có $sđ\overparen{AQ} = sđ\overparen{CQ}=\dfrac{1}{2}sđ\,\overparen{AC} $$sđ\overparen{AR} = sđ\overparen{BR}=\dfrac{1}{2}sđ\,\overparen{AB} .$ Khi đó theo tính chất của góc có đỉnh bên trong đường tròn ta có
\(\begin{array}{l}\widehat {ASQ} = \dfrac{1}{2}\left( {sđ\,\overparen{AQ} + sđ\,\overparen{PR}} \right)\\ = \dfrac{1}{2}\left( {\dfrac{1}{2}sđ\,\overparen{AC} + \dfrac{1}{2}sđ\,\overparen{AB} + \dfrac{1}{2}sđ\,\overparen{BC}} \right) \\= \dfrac{1}{2}\left( {\dfrac{1}{2}{{.360}^0}} \right) = {90^0}.\end{array}\)
Cho tam giác nhọn \(ABC\,\,\left( {AB > BC} \right)\) nội tiếp đường tròn \(\left( O \right).\) \(D\) là điểm chính giữa cung \(AC.\) Giả sử \(\{E\} = AB \cap CD,\,\,\{F\} = AD \cap BC.\) Khi đó :
Theo tính chất của góc ngoài đường tròn ta có
\(\left\{ \begin{array}{l}\widehat {AED} = \dfrac{1}{2}\left( {sđ\,\overparen{BC} - sđ\,\overparen{AD}} \right)\\\widehat {CFD} = \dfrac{1}{2}\left( {sđ\,\overparen{AB} - sđ\,\overparen{CD}} \right)\end{array} \right.\,\,\left( 1 \right).\)
Theo đề bài ta có \(AB > BC \Rightarrow sđ\,\overparen{BC} < sđ\,\overparen{AB}\,\,\left( 2 \right).\)
Mặt khác ta có \(D\) là điểm chính giữa cung \(AC\) nên \(sđ\,\overparen{AD} = sđ\,\overparen{CD}\,\left( 3 \right).\)
Từ \(\left( 1 \right),\,\left( 2 \right)\) và \(\left( 3 \right)\) ta có \(\widehat {AED} < \widehat {CFD}.\)
Cho hình vẽ, biết số đo cung \(BmD\) là \({120^0}.\) Khi đó
Xét $(O)$ có $\widehat {BOD} = sđ \overparen{BmD}=120^0$
mà góc $BOD$ và $AOB$ là hai góc kề bù nên \(\widehat {AOB} = 180^\circ - \widehat {BOD} = 60^\circ \)
Xét tam giác $AOB$ vuông tại $B$ (do $AB$ là tiếp tuyến) nên
\( \widehat {AOB} + \widehat {OAB} = 90^\circ \Rightarrow \widehat {OAB} = 90^\circ - 60^\circ = 30^\circ \)
Cho đường tròn tâm \(O,\) đường kính \(AB.\) Lấy điểm \(P\) khác \(A\) và \(B\) trên đường tròn sao cho \(\widehat {BAP} = {30^0}.\) Gọi \(T\) là giao điểm của \(AP\) với tiếp tuyến tại \(B\) của đường tròn. Khi đó ta có \(\widehat {PBT} = ?\)
Xét $(O)$ có góc $PAB$ là góc nội tiếp chắn cung $BP$, góc $PBT$ là góc tạo bởi tia tiếp tuyến và dây cung $BP$
nên \(\widehat {PBT} = \widehat {PAB} = 30^\circ \)