Rút gọn biểu thức \(P = \dfrac{{2\sqrt 6 + \sqrt 3 + 4\sqrt 2 + 3}}{{\sqrt {11 + 2\left( {\sqrt 6 + \sqrt {12} + \sqrt {18} } \right)} }}\) ta được
Ta có \(P = \dfrac{{2\sqrt 6 + \sqrt 3 + 4\sqrt 2 + 3}}{{\sqrt {11 + 2\left( {\sqrt 6 + \sqrt {12} + \sqrt {18} } \right)} }}\)
\( = \dfrac{{\left( {\sqrt 6 + 3 + 3\sqrt 2 } \right) + \left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {2 + 3 + 6 + 2\left( {\sqrt 2 .\sqrt 3 + \sqrt 2 .\sqrt 6 + \sqrt 3 .\sqrt 6 } \right)} }}\)
\( = \dfrac{{\sqrt 3 \left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right) + \left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right)}}{{\sqrt {2 + 3 + 6 + 2\left( {\sqrt 2 .\sqrt 3 + \sqrt 2 .\sqrt 6 + \sqrt 3 .\sqrt 6 } \right)} }}\)
\( = \dfrac{{\left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right)\left( {\sqrt 3 + 1} \right)}}{{\sqrt {{{\left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right)}^2}} }}\)
\( = \dfrac{{\left( {\sqrt 2 + \sqrt 3 + \sqrt 6 } \right)\left( {\sqrt 3 + 1} \right)}}{{\sqrt 2 + \sqrt 3 + \sqrt 6 }}\)
\( = \sqrt 3 + 1.\)
Vậy \(P = \sqrt 3 + 1\) .
Rút gọn biểu thức \(A = \sqrt x - \sqrt {x - \sqrt x + \dfrac{1}{4}} \) khi \(x \ge 0\) ta được:
Ta có \(A = \sqrt x - \sqrt {x - \sqrt x + \dfrac{1}{4}} = \sqrt x - \sqrt {{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2}} = \sqrt x - \left| {\sqrt x - \dfrac{1}{2}} \right|\)
+ Nếu \(\sqrt x \ge \dfrac{1}{2} \Leftrightarrow x \ge \dfrac{1}{4}\) thì \(\left| {\sqrt x - \dfrac{1}{2}} \right| = \sqrt x - \dfrac{1}{2} \Rightarrow A = \dfrac{1}{2}\).
+ Nếu \(\sqrt x < \dfrac{1}{2} \Leftrightarrow 0 \le x < \dfrac{1}{4}\) thì \(\left| {\sqrt x - \dfrac{1}{2}} \right| = - \sqrt x + \dfrac{1}{2} \Rightarrow A = 2\sqrt x - \dfrac{1}{2}\)
Vậy \(A = \dfrac{1}{2}\) hoặc \(A = 2\sqrt x - \dfrac{1}{2}.\)
Cho biểu thức \(B = \sqrt {4x - 2\sqrt {4x - 1} } + \sqrt {4x + 2\sqrt {4x - 1} } \) (với \(\dfrac{1}{4} \le x \le \dfrac{1}{2}\)) . Chọn câu đúng.
Ta có:
\(B = \sqrt {4x - 2\sqrt {4x - 1} } + \sqrt {4x + 2\sqrt {4x - 1} } = \sqrt {4x - 1 - 2\sqrt {4x - 1} + 1} + \sqrt {4x - 1 + 2\sqrt {4x - 1} + 1} \)
\(B = \sqrt {{{\left( {\sqrt {4x - 1} - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt {4x - 1} + 1} \right)}^2}} = \left| {\sqrt {4x - 1} - 1} \right| + \left| {\sqrt {4x - 1} + 1} \right|\)
\( = \left| {\sqrt {4x - 1} - 1} \right| + \sqrt {4x - 1} + 1\)
Với \(\dfrac{1}{4} \le x \le \dfrac{1}{2} \Leftrightarrow 1 \le 4x \le 2 \Leftrightarrow 0 \le 4x - 1 \le 1\)
Từ đó \(\left| {\sqrt {4x - 1} - 1} \right| = - \sqrt {4x - 1} + 1\) suy ra \(B = - \sqrt {4x - 1} + 1 + \sqrt {4x - 1} + 1 = 2\).
Do đó \(B > 1.\)
Rút gọn \(Q.\)
Ta có \(Q = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \left( {1 + \dfrac{x}{{\sqrt {{x^2} - {y^2}} }}} \right):\dfrac{y}{{x - \sqrt {{x^2} - {y^2}} }}\)
\(\begin{array}{l} = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{x + \sqrt {{x^2} - {y^2}} }}{{\sqrt {{x^2} - {y^2}} }} \cdot \dfrac{{x - \sqrt {{x^2} - {y^2}} }}{y}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{{x^2} - {x^2} + {y^2}}}{{y\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{y}{{\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{{{{\left( {\sqrt {x - y} } \right)}^2}}}{{\sqrt {x + y} .\sqrt {x - y} }}\\ = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\end{array}\)
Vậy \(Q = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\) với \(x > y > 0\)
Khi \(x = 3y\) thì giá trị của \(Q\) bằng
Theo câu trước ta có \(Q = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\) với \(x > y > 0\)
Thay \(x = 3y\) (thỏa mãn ĐK) vào biểu thức Q, ta được:
\(Q = \dfrac{{\sqrt {3y - y} }}{{\sqrt {3y + y} }} = \dfrac{{\sqrt {2y} }}{{\sqrt {4y} }} = \dfrac{{\sqrt 2 }}{2}\)
Vậy \(Q = \dfrac{{\sqrt 2 }}{2}\) khi \(x = 3y\).
Rút gọn \(Q.\)
Ta có \(Q = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \left( {1 + \dfrac{x}{{\sqrt {{x^2} - {y^2}} }}} \right):\dfrac{y}{{x - \sqrt {{x^2} - {y^2}} }}\)
\(\begin{array}{l} = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{x + \sqrt {{x^2} - {y^2}} }}{{\sqrt {{x^2} - {y^2}} }} \cdot \dfrac{{x - \sqrt {{x^2} - {y^2}} }}{y}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{{x^2} - {x^2} + {y^2}}}{{y\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{y}{{\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{{{{\left( {\sqrt {x - y} } \right)}^2}}}{{\sqrt {x + y} .\sqrt {x - y} }}\\ = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\end{array}\)
Vậy \(Q = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\) với \(x > y > 0\)
Rút gọn \(Q.\)
Ta có \(Q = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \left( {1 + \dfrac{x}{{\sqrt {{x^2} - {y^2}} }}} \right):\dfrac{y}{{x - \sqrt {{x^2} - {y^2}} }}\)
\(\begin{array}{l} = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{x + \sqrt {{x^2} - {y^2}} }}{{\sqrt {{x^2} - {y^2}} }} \cdot \dfrac{{x - \sqrt {{x^2} - {y^2}} }}{y}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{{{x^2} - {x^2} + {y^2}}}{{y\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{x}{{\sqrt {{x^2} - {y^2}} }} - \dfrac{y}{{\sqrt {{x^2} - {y^2}} }}\\ = \dfrac{{{{\left( {\sqrt {x - y} } \right)}^2}}}{{\sqrt {x + y} .\sqrt {x - y} }}\\ = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\end{array}\)
Vậy \(Q = \dfrac{{\sqrt {x - y} }}{{\sqrt {x + y} }}\) với \(x > y > 0\)
Tìm giá trị nhỏ nhất của \(A.\)
+ Điều kiện để biểu thức \(A\) xác định là \(x > 4\).
+ Nhận thấy:
\(\sqrt {x + 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) + 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} + 2} \right| = \sqrt {x - 4} + 2.\)
\(\sqrt {x - 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} - 2} \right|\)
\(\sqrt {{x^2} - 8x + 16} = \sqrt {{{\left( {x - 4} \right)}^2}} = \left| {x - 4} \right|\)
Từ đó:
\(A = \dfrac{{x\left( {\left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{\left| {x - 4} \right|}} = \)\(\dfrac{{x\left( {\sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{x - 4}}\)
+ Nếu \(4 < x < 8\) thì \(\sqrt {x - 4} - 2 < 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} } \right)}}{{x - 4}} = \dfrac{{4x}}{{x - 4}} = 4 + \dfrac{{16}}{{x - 4}}$
Do \(4 < x < 8\) nên \(0 < x - 4 < 4 \Rightarrow A > 8\).
+ Nếu $x \ge 8$ thì \(\sqrt {x - 4} - 2 \ge 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + \sqrt {x - 4} - 2} \right)}}{{x - 4}} = \dfrac{{2x\sqrt {x - 4} }}{{x - 4}} = \dfrac{{2x}}{{\sqrt {x - 4} }} = 2\sqrt {x - 4} + \dfrac{8}{{\sqrt {x - 4} }} \ge 2\sqrt {16} = 8$ (Theo bất đẳng thức Cô si). Dấu bằng xảy ra khi và chỉ khi $2\sqrt {x - 4} = \dfrac{8}{{\sqrt {x - 4} }} \Leftrightarrow x - 4 = 4 \Leftrightarrow x = 8$.
Vậy GTNN của $A$ bằng \(8\) khi \(x = 8\).
Rút gọn biểu thức $A$.
Ta có: \(\dfrac{{x + 4\sqrt x + 4}}{{x + \sqrt x - 2}} + \dfrac{{x + \sqrt x }}{{1 - x}} = \dfrac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)
\( = \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x }}{{\sqrt x - 1}} = \dfrac{2}{{\sqrt x - 1}}\)
Và \(\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{1 - \sqrt x }} = \dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
Từ đó: \(A = \dfrac{2}{{\sqrt x - 1}}:\dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} = \dfrac{2}{{\sqrt x - 1}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{2\sqrt x }}\)\( = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\)
Vậy \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\) với điều kiện \(x > 0,\,\,x \ne 1\).
Tìm \(x\) để \(P = - 1.\)
Điều kiện: \(x > 0,x \ne 4,x \ne 9\)
\(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\\ = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \dfrac{2}{{\sqrt x }}} \right)\\ = \dfrac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}:\dfrac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\ = \dfrac{{8\sqrt x + 4x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}\\ = \dfrac{{4\sqrt x \left( {2 + \sqrt x } \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\sqrt x - 3}}\\ = \dfrac{{4x}}{{\sqrt x - 3}}\end{array}\)
Với điều kiện: \(x > 0,x \ne 4,x \ne 9\).
Ta có: \(P = - 1\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{4x}}{{\sqrt x - 3}} = - 1 \Leftrightarrow 4x + \sqrt x - 3 = 0 \Leftrightarrow 4x + 4\sqrt x - 3\sqrt x - 3 = 0 \Leftrightarrow 4\sqrt x \left( {\sqrt x + 1} \right) - 3\left( {\sqrt x + 1} \right) = 0\\ \Leftrightarrow \left( {\sqrt x + 1} \right)\left( {4\sqrt x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x = - 1\left( {ktm} \right)\\\sqrt x = \dfrac{3}{4} \Leftrightarrow x = \dfrac{9}{{16}}\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy \(x = \dfrac{9}{{16}}\) thì \(P = - 1.\)
Có bao nhiêu giá trị nguyên của \(x\) để \(A\) có giá trị nguyên.
Theo câu trước ta có: \(A = \left\{ \begin{array}{l}4 + \dfrac{{16}}{{x - 4}}\,\,\,khi\,\,\,4 < x < 8\\\dfrac{{2x}}{{\sqrt {x - 4} }}\,\,\,\,khi\,\,x \ge 8\end{array} \right.\,\,\)
+ Xét \(4 < x < 8\) thì $A = 4 + \dfrac{{16}}{{x - 4}}$, ta thấy \(A \in Z\) khi và chỉ khi $\dfrac{{16}}{{x - 4}} \in Z \Leftrightarrow x - 4$ là ước số nguyên dương của \(16\). Hay $x - 4 \in \left\{ {1;2;4;8;16} \right\} \Leftrightarrow x = \left\{ {5;6;8;12;20} \right\}$ đối chiếu điều kiện suy ra: ${\rm{x}} = 5$ hoặc \(x = 6\).
+ Xét $x \ge 8$ ta có: $A = \dfrac{{2x}}{{\sqrt {x - 4} }}$, đặt \(\sqrt {x - 4} = m \Rightarrow \left\{ \begin{array}{l}x = {m^2} + 4\\m \ge 2\end{array} \right.\) (ở đây $ m\in Z$ vì $x$ nguyên và $A$ nguyên), khi đó ta có: \(A = \dfrac{{2\left( {{m^2} + 4} \right)}}{m} = 2m + \dfrac{8}{m}\) suy ra: \(m \in \left\{ {2;4;8} \right\} \Leftrightarrow x \in \left\{ {8;20;68} \right\}\).
Tóm lại: Để $A$ nhận giá trị nguyên thì \(x \in \left\{ {5;6;8;20;68} \right\}\).
Vậy có \(5\) giá trị của \(x\) thỏa mãn điều kiện đề bài.
Tìm giá trị nhỏ nhất của \(A.\)
+ Điều kiện để biểu thức \(A\) xác định là \(x > 4\).
+ Nhận thấy:
\(\sqrt {x + 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) + 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} + 2} \right| = \sqrt {x - 4} + 2.\)
\(\sqrt {x - 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} - 2} \right|\)
\(\sqrt {{x^2} - 8x + 16} = \sqrt {{{\left( {x - 4} \right)}^2}} = \left| {x - 4} \right|\)
Từ đó:
\(A = \dfrac{{x\left( {\left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{\left| {x - 4} \right|}} = \)\(\dfrac{{x\left( {\sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{x - 4}}\)
+ Nếu \(4 < x < 8\) thì \(\sqrt {x - 4} - 2 < 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} } \right)}}{{x - 4}} = \dfrac{{4x}}{{x - 4}} = 4 + \dfrac{{16}}{{x - 4}}$
Do \(4 < x < 8\) nên \(0 < x - 4 < 4 \Rightarrow A > 8\).
+ Nếu $x \ge 8$ thì \(\sqrt {x - 4} - 2 \ge 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + \sqrt {x - 4} - 2} \right)}}{{x - 4}} = \dfrac{{2x\sqrt {x - 4} }}{{x - 4}} = \dfrac{{2x}}{{\sqrt {x - 4} }} = 2\sqrt {x - 4} + \dfrac{8}{{\sqrt {x - 4} }} \ge 2\sqrt {16} = 8$ (Theo bất đẳng thức Cô si). Dấu bằng xảy ra khi và chỉ khi $2\sqrt {x - 4} = \dfrac{8}{{\sqrt {x - 4} }} \Leftrightarrow x - 4 = 4 \Leftrightarrow x = 8$.
Vậy GTNN của $A$ bằng \(8\) khi \(x = 8\).
Tìm giá trị nhỏ nhất của \(A.\)
+ Điều kiện để biểu thức \(A\) xác định là \(x > 4\).
+ Nhận thấy:
\(\sqrt {x + 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) + 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} + 2} \right| = \sqrt {x - 4} + 2.\)
\(\sqrt {x - 4\sqrt {x - 4} } = \sqrt {\left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4} = \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)\( = \left| {\sqrt {x - 4} - 2} \right|\)
\(\sqrt {{x^2} - 8x + 16} = \sqrt {{{\left( {x - 4} \right)}^2}} = \left| {x - 4} \right|\)
Từ đó:
\(A = \dfrac{{x\left( {\left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{\left| {x - 4} \right|}} = \)\(\dfrac{{x\left( {\sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|} \right)}}{{x - 4}}\)
+ Nếu \(4 < x < 8\) thì \(\sqrt {x - 4} - 2 < 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} } \right)}}{{x - 4}} = \dfrac{{4x}}{{x - 4}} = 4 + \dfrac{{16}}{{x - 4}}$
Do \(4 < x < 8\) nên \(0 < x - 4 < 4 \Rightarrow A > 8\).
+ Nếu $x \ge 8$ thì \(\sqrt {x - 4} - 2 \ge 0\) nên $A = \dfrac{{x\left( {\sqrt {x - 4} + 2 + \sqrt {x - 4} - 2} \right)}}{{x - 4}} = \dfrac{{2x\sqrt {x - 4} }}{{x - 4}} = \dfrac{{2x}}{{\sqrt {x - 4} }} = 2\sqrt {x - 4} + \dfrac{8}{{\sqrt {x - 4} }} \ge 2\sqrt {16} = 8$ (Theo bất đẳng thức Cô si). Dấu bằng xảy ra khi và chỉ khi $2\sqrt {x - 4} = \dfrac{8}{{\sqrt {x - 4} }} \Leftrightarrow x - 4 = 4 \Leftrightarrow x = 8$.
Vậy GTNN của $A$ bằng \(8\) khi \(x = 8\).
Có bao nhiêu giá trị nguyên của $x$ để $A \ge \dfrac{{1 + \sqrt {2018} }}{{\sqrt {2018} }}.$
Theo câu trước ta có: \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\), với điều kiện \(x > 0,\,\,x \ne 1\).
Để $A \ge \dfrac{{1 + \sqrt {2018} }}{{\sqrt {2018} }}$ $ \Leftrightarrow 1 + \dfrac{1}{{\sqrt x }} \ge 1 + \dfrac{1}{{\sqrt {2018} }}$$ \Leftrightarrow \dfrac{1}{{\sqrt x }} \ge \dfrac{1}{{\sqrt {2018} }}$
$ \Leftrightarrow \sqrt x \le \sqrt {2018} \Rightarrow 0 < x \le 2018$
Kết hợp điều kiện: \(x > 0,\,\,x \ne 1\) và \(x\) nguyên nên \(x \in \left\{ {2;3;4;...;2018} \right\}\). Suy ra có $2017$ giá trị nguyên của \(x\) thỏa mãn bài toán.
Rút gọn biểu thức $A$.
Ta có: \(\dfrac{{x + 4\sqrt x + 4}}{{x + \sqrt x - 2}} + \dfrac{{x + \sqrt x }}{{1 - x}} = \dfrac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)
\( = \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x }}{{\sqrt x - 1}} = \dfrac{2}{{\sqrt x - 1}}\)
Và \(\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{1 - \sqrt x }} = \dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
Từ đó: \(A = \dfrac{2}{{\sqrt x - 1}}:\dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} = \dfrac{2}{{\sqrt x - 1}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{2\sqrt x }}\)\( = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\)
Vậy \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\) với điều kiện \(x > 0,\,\,x \ne 1\).
Rút gọn biểu thức $A$.
Ta có: \(\dfrac{{x + 4\sqrt x + 4}}{{x + \sqrt x - 2}} + \dfrac{{x + \sqrt x }}{{1 - x}} = \dfrac{{{{\left( {\sqrt x + 2} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\)
\( = \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x }}{{\sqrt x - 1}} = \dfrac{2}{{\sqrt x - 1}}\)
Và \(\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{1 - \sqrt x }} = \dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
Từ đó: \(A = \dfrac{2}{{\sqrt x - 1}}:\dfrac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} = \dfrac{2}{{\sqrt x - 1}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{2\sqrt x }}\)\( = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\)
Vậy \(A = \dfrac{{\sqrt x + 1}}{{\sqrt x }}\) với điều kiện \(x > 0,\,\,x \ne 1\).
Tìm $m$ để với mọi giá trị \(x > 9\) ta có: $m\left( {\sqrt x - 3} \right)P > x + 1$
Ta có \(P = \dfrac{{4x}}{{\sqrt x - 3}}\) với \(x > 0,x \ne 4,x \ne 9\)
Khi đó
\(\forall x > 9:m\left( {\sqrt x - 3} \right)P > x + 1 \Leftrightarrow m\left( {\sqrt x - 3} \right).\dfrac{{4x}}{{\sqrt x - 3}} > x + 1 \Leftrightarrow m.4x > x + 1 \Leftrightarrow m > \dfrac{{x + 1}}{{4x}}\)
Ta thấy \(\dfrac{{x + 1}}{{4x}} = \dfrac{1}{4} + \dfrac{1}{{4x}} < \dfrac{1}{4} + \dfrac{1}{{4.9}}\) với mọi \(x > 9\) hay \(\dfrac{{x + 1}}{{4x}} < \dfrac{5}{{18}}\)
Vậy \(m > \dfrac{{10}}{{36}} = \dfrac{5}{{18}}\) với mọi \(x > 9\) .
Tìm \(x\) để \(P = - 1.\)
Điều kiện: \(x > 0,x \ne 4,x \ne 9\)
\(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\\ = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \dfrac{2}{{\sqrt x }}} \right)\\ = \dfrac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}:\dfrac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\ = \dfrac{{8\sqrt x + 4x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}\\ = \dfrac{{4\sqrt x \left( {2 + \sqrt x } \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\sqrt x - 3}}\\ = \dfrac{{4x}}{{\sqrt x - 3}}\end{array}\)
Với điều kiện: \(x > 0,x \ne 4,x \ne 9\).
Ta có: \(P = - 1\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{4x}}{{\sqrt x - 3}} = - 1 \Leftrightarrow 4x + \sqrt x - 3 = 0 \Leftrightarrow 4x + 4\sqrt x - 3\sqrt x - 3 = 0 \Leftrightarrow 4\sqrt x \left( {\sqrt x + 1} \right) - 3\left( {\sqrt x + 1} \right) = 0\\ \Leftrightarrow \left( {\sqrt x + 1} \right)\left( {4\sqrt x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x = - 1\left( {ktm} \right)\\\sqrt x = \dfrac{3}{4} \Leftrightarrow x = \dfrac{9}{{16}}\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy \(x = \dfrac{9}{{16}}\) thì \(P = - 1.\)
Tìm \(x\) để \(P = - 1.\)
Điều kiện: \(x > 0,x \ne 4,x \ne 9\)
\(\begin{array}{l}P = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{4 - x}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{x - 2\sqrt x }} - \dfrac{2}{{\sqrt x }}} \right)\\ = \left( {\dfrac{{4\sqrt x }}{{2 + \sqrt x }} + \dfrac{{8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right):\left( {\dfrac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \dfrac{2}{{\sqrt x }}} \right)\\ = \dfrac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}:\dfrac{{\sqrt x - 1 - 2\left( {\sqrt x - 2} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\ = \dfrac{{8\sqrt x + 4x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{3 - \sqrt x }}\\ = \dfrac{{4\sqrt x \left( {2 + \sqrt x } \right)}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\sqrt x - 3}}\\ = \dfrac{{4x}}{{\sqrt x - 3}}\end{array}\)
Với điều kiện: \(x > 0,x \ne 4,x \ne 9\).
Ta có: \(P = - 1\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{4x}}{{\sqrt x - 3}} = - 1 \Leftrightarrow 4x + \sqrt x - 3 = 0 \Leftrightarrow 4x + 4\sqrt x - 3\sqrt x - 3 = 0 \Leftrightarrow 4\sqrt x \left( {\sqrt x + 1} \right) - 3\left( {\sqrt x + 1} \right) = 0\\ \Leftrightarrow \left( {\sqrt x + 1} \right)\left( {4\sqrt x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\sqrt x = - 1\left( {ktm} \right)\\\sqrt x = \dfrac{3}{4} \Leftrightarrow x = \dfrac{9}{{16}}\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy \(x = \dfrac{9}{{16}}\) thì \(P = - 1.\)
Cho \(C = \sqrt {9 - \sqrt {5\sqrt 3 + 5\sqrt {8 + 10\sqrt {7 - 4\sqrt 3 } } } } \) và \(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\) . Chọn câu đúng.
+ Tính giá trị \(C.\)
Vì \(7 - 4\sqrt 3 = {\left( {2 - \sqrt 3 } \right)^2} \Rightarrow \sqrt {7 - 4\sqrt 3 } = 2 - \sqrt 3 \)
Suy ra \(C = \sqrt {9 - \sqrt {5\sqrt 3 + 5\sqrt {8 + 10(2 - \sqrt 3 )} } } = \sqrt {9 - \sqrt {5\sqrt 3 + 5\sqrt {28 - 10\sqrt 3 } } } \)\( = \sqrt {9 - \sqrt {5\sqrt 3 + 5\sqrt {{{\left( {5 - \sqrt 3 } \right)}^2}} } } .\) Hay \(C = \sqrt {9 - \sqrt {5\sqrt 3 + 5(5 - \sqrt 3 )} } = \sqrt {9 - \sqrt {25} } = \sqrt {9 - 5} = \sqrt 4 = 2\)
+ Tính giá trị \(B.\)
Áp dụng hằng đẳng thức: \({\left( {u + v} \right)^3} = {u^3} + {v^3} + 3uv\left( {u + v} \right).\) Ta có:
\(B = \sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}\)
Suy ra \({B^3} = {\left( {\sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}} \right)^3}\)\( = 1 + \dfrac{{\sqrt {84} }}{9} + 1 - \dfrac{{\sqrt {84} }}{9} + 3\left( {\sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}}.\sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}} \right)\left( {\sqrt[3]{{1 + \dfrac{{\sqrt {84} }}{9}}} + \sqrt[3]{{1 - \dfrac{{\sqrt {84} }}{9}}}} \right).\)
Hay \({B^3} = 2 + 3\sqrt[3]{{\left( {1 + \dfrac{{\sqrt {84} }}{9}} \right)\left( {1 - \dfrac{{\sqrt {84} }}{9}} \right)}}.B \)\(\Leftrightarrow {B^3} = 2 + 3\sqrt[3]{{1 - \dfrac{{84}}{{81}}}}B \)\(\Leftrightarrow {B^3} = 2 - B \Leftrightarrow {B^3} + B - 2 = 0\)\( \Leftrightarrow {B^3} - {B^2} + {B^2} - B + 2B - 2 = 0\)\( \Leftrightarrow {B^2}\left( {B - 1} \right) + B\left( {B - 1} \right) + 2\left( {B - 1} \right) = 0\)\( \Leftrightarrow \left( {B - 1} \right)\left( {{B^2} + B + 2} \right) = 0\) mà \({B^2} + B + 2 = {\left( {B + \dfrac{1}{2}} \right)^2} + \dfrac{7}{4} > 0\) suy ra \(B = 1\).
Do đó ta có \(C = 2;\,B = 1 \Rightarrow C = 2B.\)