Bài tập vận dụng cao từ các đề thi chuyên

Câu 1 Trắc nghiệm

Góc \(MEP\)  bằng với góc nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có M là trung điểm của cạnh BC $ \Rightarrow OM \bot BC$ (liên hệ đường kính và dây cung)

Ta có tứ giác BMPD nội tiếp ( vì \(\widehat {BDP}\)+ \(\widehat {BMP}\)=1800) \( \Rightarrow \widehat {MDP}\) = \(\widehat {MBP}\)  (tính chất của tứ giác nội tiếp) (1)

Tương tự có tứ giác  MCEP nội tiếp => \(\widehat {MEP}\) = \(\widehat {MCP}\)  (tính chất của tứ giác nội tiếp) (2)

Mà tiếp tuyến tại B và C cắt nhau tại P  nên dễ dàng suy ra được \(\Delta BPC\;\)cân tại P ( tính chất 2 tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {MCP}{\rm{\;}} = \;\widehat {MBP}\;\left( 3 \right)\)

Từ (1); (2);(3) => \(\widehat {MEP}\) = \(\widehat {MDP}\)

Câu 2 Trắc nghiệm

Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ $CI,{\rm{ }}IB,{\rm{ }}BK,{\rm{ }}KC$ và các dây cung tương ứng của $\left( O \right)$ biết $AB = 20,{\rm{ }}BC = 24.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là \(S'\) , gọi giao điểm $BC$ và $IK$ là $M.$

Ta có ngay :

$\begin{array}{l}S = S' - {S_{ICKB}} = \pi I{O^2} - {S_{IBK}} - {S_{IKC}}\\ = \pi \dfrac{{I{K^2}}}{4} - \dfrac{{BM.IK}}{2} - \dfrac{{CM.IK}}{2}\\ = \pi \dfrac{{I{K^2}}}{4} - \dfrac{{BC.IK}}{2}.\end{array}$

Ta có :

\(\begin{array}{l}\;\;\;\;\;{S_{ABC}} = \dfrac{1}{2}AM.BC = \dfrac{{AB + BC + CA}}{2}.IM\\ \Leftrightarrow \sqrt {A{B^2} - B{M^2}} .24 = \left( {AB + BC + CA} \right).IM\\ \Leftrightarrow \sqrt {{{20}^2} - {{\left( {\dfrac{{24}}{2}} \right)}^2}} .24 = \left( {20.2 + 24} \right).IM\\ \Leftrightarrow IM = 6.\end{array}\)

Áp dụng hệ thức lượng trong tam giác \(IBM\) vuông tại \(B\) có đường cao \(BM\) ta có :

\(\begin{array}{l}B{M^2} = IM.MK \Leftrightarrow MK = \dfrac{{B{M^2}}}{{IM}} = \dfrac{{{{12}^2}}}{6} = 24.\\ \Rightarrow IM = IM + MK = 6 + 24 = 30.\\ \Rightarrow S = \dfrac{1}{4}\pi I{K^2} - \dfrac{1}{2}BC.IK = \dfrac{1}{4}\pi {.30^2} - \dfrac{1}{2}.24.30\\ = 225\pi  - 360\;\;\left( {dvdt} \right).\end{array}\)

Câu 3 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên $\widehat {ICK} = {90^0}$

Chứng minh hoàn toàn tương tự ta có: $\widehat {IBK} = {90^0}$

Xét tứ giác BICK ta có: \(\widehat {IBK} + \widehat {ICK} = {90^0} + {90^0} = {180^0}.\)

\( \Rightarrow BICK\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\))

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC hay bốn điểm B, I, C, K cùng thuộc (O)

+) Ta có : Tam giác IOC cân tại O nên : $\widehat {OIC} = \widehat {OCI}.$

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

$\widehat {OIC} = \widehat {IAC} + \widehat {ACI} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC}$

$ \Rightarrow \widehat {ICO} + \widehat {ICA} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}{.180^0} = {90^0}$

$ \Rightarrow OC \bot CA.$

Do đó AC là tiếp tuyến của (O) tại C.

Cả A, B đều đúng.

Câu 4 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên $\widehat {ICK} = {90^0}$

Chứng minh hoàn toàn tương tự ta có: $\widehat {IBK} = {90^0}$

Xét tứ giác BICK ta có: \(\widehat {IBK} + \widehat {ICK} = {90^0} + {90^0} = {180^0}.\)

\( \Rightarrow BICK\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\))

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC hay bốn điểm B, I, C, K cùng thuộc (O)

+) Ta có : Tam giác IOC cân tại O nên : $\widehat {OIC} = \widehat {OCI}.$

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

$\widehat {OIC} = \widehat {IAC} + \widehat {ACI} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC}$

$ \Rightarrow \widehat {ICO} + \widehat {ICA} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}{.180^0} = {90^0}$

$ \Rightarrow OC \bot CA.$

Do đó AC là tiếp tuyến của (O) tại C.

Cả A, B đều đúng.

Câu 5 Trắc nghiệm

Gọi $MN$ là đường kính bất kì của đường tròn \(\left( O \right)\) sao cho ba điểm $S,{\rm{ }}M,{\rm{ }}N$ không thẳng hàng. Xác định vị trí của $MN$ để diện tích tam giác $SMN$ lớn nhất.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Kẻ \(SE \bot MN \Rightarrow {S_{SMN}} = \dfrac{1}{2}MN.SE\). Mà có \(MN\) cố định ($MN$ là đường kính của đường tròn)

Vậy nên \({S_{SMN}}\) max khi và chỉ khi $SE$ max

Xét \(\Delta SOE\) vuông tại E có \(SO\) là cạnh huyền , \(SE\) là cạnh góc vuông \( \Rightarrow SE \le SO \Rightarrow {S_{SMN}} \le \dfrac{1}{2}MN.SO\)

Dấu “=” xảy ra khi và chỉ khi \(SE\) trùng với \(SO\), suy ra \(SO \bot MN\).

Vậy diện tích tam giác$SMN$   lớn nhất khi và chỉ khi \(SO \bot MN\).

Câu 6 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(D,K\) lần lượt là giao điểm của \(SO\) với đường tròn (\(D\) nằm giữa \(K\) và \(S\))

Xét đường tròn \(\left( O \right)\) có:

 \(\angle SAD\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(AD\)

\(\angle AKS\) là góc nội tiếp chắn cung \(AD\).

Suy ra \(\angle SAD = \angle AKS\).

Xét \(\Delta SDA\) và $\Delta SAK$ có:

\(\angle KSA\) chung

\(\angle SAD = \angle AKS\) (cmt)

\( \Rightarrow \Delta SDA \backsim \Delta SAK \Rightarrow \dfrac{{SA}}{{SK}} = \dfrac{{SD}}{{SA}} \Rightarrow S{A^2} = SK.SD\).  (1)

Xét \(\Delta KCS\) và \(\Delta BDS\) ta có:

\(\angle AKC = \angle DBS\) (hai góc nội tiếp cùng chắn cung DC)

\(\angle DSC\) chung

\( \Rightarrow \Delta KCS \backsim \Delta BDS \Rightarrow \dfrac{{KS}}{{BS}} = \dfrac{{SC}}{{SD}} \Rightarrow SB.SC = SK.SD\)                         (2)

Từ (1) và (2) \( \Rightarrow S{A^2} = SC.SB\)

Câu 7 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \(D,K\) lần lượt là giao điểm của \(SO\) với đường tròn (\(D\) nằm giữa \(K\) và \(S\))

Xét đường tròn \(\left( O \right)\) có:

 \(\angle SAD\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(AD\)

\(\angle AKS\) là góc nội tiếp chắn cung \(AD\).

Suy ra \(\angle SAD = \angle AKS\).

Xét \(\Delta SDA\) và $\Delta SAK$ có:

\(\angle KSA\) chung

\(\angle SAD = \angle AKS\) (cmt)

\( \Rightarrow \Delta SDA \backsim \Delta SAK \Rightarrow \dfrac{{SA}}{{SK}} = \dfrac{{SD}}{{SA}} \Rightarrow S{A^2} = SK.SD\).  (1)

Xét \(\Delta KCS\) và \(\Delta BDS\) ta có:

\(\angle AKC = \angle DBS\) (hai góc nội tiếp cùng chắn cung DC)

\(\angle DSC\) chung

\( \Rightarrow \Delta KCS \backsim \Delta BDS \Rightarrow \dfrac{{KS}}{{BS}} = \dfrac{{SC}}{{SD}} \Rightarrow SB.SC = SK.SD\)                         (2)

Từ (1) và (2) \( \Rightarrow S{A^2} = SC.SB\)

Câu 8 Trắc nghiệm

Đường thẳng qua $O$ vuông góc với \(OM\) cắt các tia \(MC;MD\) lần lượt tại \(E;F\). Xác định hình dạng của tứ giác \(MCOD\) để diện tích tam giác \(MEF\) nhỏ nhất khi \(M\) di động trên tia đối của tia \(BA.\)

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta nhận thấy \({S_{MFE}} = 2{S_{MEO}}\) (do có chung đường cao\(MO\)và \(OE = \dfrac{1}{2}FE\))

\( \Rightarrow {S_{MFE}}\max  \Leftrightarrow {S_{MEO}}\max \)

Xét \(\Delta MEO\) có: \({S_{MEO}} = \dfrac{1}{2}CO.ME = \dfrac{1}{2}R.\left( {CE + CM} \right)\)

Mà có: \(CM = \dfrac{{CO}}{{\tan \left( {\angle CMO} \right)}} = \dfrac{R}{{\tan \left( {\angle CMO} \right)}};CE = \dfrac{{CO}}{{\tan \left( {\angle CEO} \right)}} = \dfrac{R}{{\tan \left( {{{90}^o} - \angle CMO} \right)}} = \dfrac{R}{{\cot \left( {\angle CMO} \right)}}\)\(\)

\( \Rightarrow {S_{MEO}} = \dfrac{1}{2}{R^2}\left( {\dfrac{1}{{\tan \left( {\angle CMO} \right)}} + \dfrac{1}{{\cot \left( {\angle CMO} \right)}}} \right) = \dfrac{1}{2}{R^2}\left( {\dfrac{1}{{\tan \left( {\angle CMO} \right)}} + \tan \left( {\angle CMO} \right)} \right)\)

Mà có \(\angle CMO\) nhọn (do \(\Delta COM\) vuông tại \(C\)) \( \Rightarrow \tan \left( {\angle CMO} \right) > 0\)

Áp dụng bất đẳng thức cosi ta có :\(\dfrac{1}{{\tan \left( {\angle CMO} \right)}} + \tan \left( {\angle CMO} \right) \ge 2\sqrt {\dfrac{1}{{\tan \left( {\angle CMO} \right)}}.\tan \left( {\angle CMO} \right)}  = 2\)

\( \Rightarrow {S_{MFE}} = 2{S_{MEO}} = 2.\dfrac{1}{2}{R^2}\left( {\dfrac{1}{{\tan \left( {\angle CMO} \right)}} + \tan \left( {\angle CMO} \right)} \right) \ge 2{R^2}\)\(\)

Dấu “=” xảy ra khi và chỉ khi \(\dfrac{1}{{\tan \left( {\angle CMO} \right)}} = \tan \left( {\angle CMO} \right) \Leftrightarrow \tan \left( {\angle CMO} \right) = 1 \Leftrightarrow \angle CMO = {45^o}\)

\( \Rightarrow \left\{ \begin{array}{l}CO = CM\\\angle CMD = {90^o}\end{array} \right. \Rightarrow MCOD\) là hình vuông (do có 3 góc vuông và hai cạnh kề nhau bằng nhau).

Câu 9 Trắc nghiệm

Chọn câu sai.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

* Xét đường tròn \(\left( {O;R} \right)\) có \(H\) là trung điểm của dây cung \(AB\)\( \Rightarrow OH \bot AB \Rightarrow \angle OHM = {90^o}\) (mối liên hệ giữa đường kính và dây cung)

Xét đường tròn \(\left( {O;R} \right)\) có \(MD\) là tiếp tuyến \( \Rightarrow OD \bot MD \Rightarrow \angle ODM = {90^o}\) (tính chất của tiếp tuyến)

Xét tứ giác \(DOHM\) có: \(\left\{ \begin{array}{l}\angle OHM = {90^o}\\\angle ODM = {90^o}\end{array} \right. \Rightarrow \angle OHM + \angle ODM = {180^o}\)

Suy ra tứ giác \(DOHM\) nội tiếp đường tròn  \( \Rightarrow D;O;H;M\) cùng thuộc một đường tròn nên A đúng.

* Xét \(\Delta COM\) và \(\Delta DOM\) có

+)\(OM\) chung

+) \(\angle OCM = \angle ODM = {90^o}\)

+) \(OC = OD = R\)

\( \Rightarrow \Delta COM = \Delta DOM\) (cạnh huyền - cạnh góc vuông) \( \Rightarrow \angle COI = \angle IOD\) (2 góc tương ứng)

\( \Rightarrow CI = ID \Rightarrow \Delta ICD\) cân \( \Rightarrow \angle ICD = \angle IDC\) (Tính chất tam giác cân) 

Xét đường tròn \(\left( {O;R} \right)\) có \(\angle ICD\) là góc nội tiếp chắn cung \(ID\); \(\angle IDM\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(ID\)\( \Rightarrow \angle ICD = \angle IDM\)

Mà có \(\angle ICD = \angle IDC \Rightarrow \angle IDO = \angle IDM\)

\( \Rightarrow ID\) là phân giác \(\angle ODM\)                                            (1)

Chứng minh tương tự có : \(IC\) là phân giác \(\angle MCO\)\(\)  (2)

Mà có \(ID\) cắt \(IC\) tại \(I\), suy ra \(I\) là giao điểm của 3 đường phân giác trong \(\Delta MCD\). Suy ra \(I\) là tâm đường tròn nội tiếp \(\Delta MCD\) nên B đúng, C sai.

Câu 10 Trắc nghiệm

Chọn câu sai.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

* Xét đường tròn \(\left( {O;R} \right)\) có \(H\) là trung điểm của dây cung \(AB\)\( \Rightarrow OH \bot AB \Rightarrow \angle OHM = {90^o}\) (mối liên hệ giữa đường kính và dây cung)

Xét đường tròn \(\left( {O;R} \right)\) có \(MD\) là tiếp tuyến \( \Rightarrow OD \bot MD \Rightarrow \angle ODM = {90^o}\) (tính chất của tiếp tuyến)

Xét tứ giác \(DOHM\) có: \(\left\{ \begin{array}{l}\angle OHM = {90^o}\\\angle ODM = {90^o}\end{array} \right. \Rightarrow \angle OHM + \angle ODM = {180^o}\)

Suy ra tứ giác \(DOHM\) nội tiếp đường tròn  \( \Rightarrow D;O;H;M\) cùng thuộc một đường tròn nên A đúng.

* Xét \(\Delta COM\) và \(\Delta DOM\) có

+)\(OM\) chung

+) \(\angle OCM = \angle ODM = {90^o}\)

+) \(OC = OD = R\)

\( \Rightarrow \Delta COM = \Delta DOM\) (cạnh huyền - cạnh góc vuông) \( \Rightarrow \angle COI = \angle IOD\) (2 góc tương ứng)

\( \Rightarrow CI = ID \Rightarrow \Delta ICD\) cân \( \Rightarrow \angle ICD = \angle IDC\) (Tính chất tam giác cân) 

Xét đường tròn \(\left( {O;R} \right)\) có \(\angle ICD\) là góc nội tiếp chắn cung \(ID\); \(\angle IDM\) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(ID\)\( \Rightarrow \angle ICD = \angle IDM\)

Mà có \(\angle ICD = \angle IDC \Rightarrow \angle IDO = \angle IDM\)

\( \Rightarrow ID\) là phân giác \(\angle ODM\)                                            (1)

Chứng minh tương tự có : \(IC\) là phân giác \(\angle MCO\)\(\)  (2)

Mà có \(ID\) cắt \(IC\) tại \(I\), suy ra \(I\) là giao điểm của 3 đường phân giác trong \(\Delta MCD\). Suy ra \(I\) là tâm đường tròn nội tiếp \(\Delta MCD\) nên B đúng, C sai.

Câu 11 Trắc nghiệm

Chọn đẳng thức đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

 

 Ta có

\(\begin{array}{l}FH = AH.\sin \widehat {BAD} = AH.\dfrac{{BD}}{{AB}}\\PM = BM.\sin \widehat {ABD} = BM.\dfrac{{AD}}{{AB}}\\ \Rightarrow FH.PM = AH.BM.\dfrac{{BD}}{{AB}}.\dfrac{{AD}}{{AB}}.\end{array}\)\(\)

Chứng minh tương tự ta có:

\(HE.QM = AH.MC.\dfrac{{DC}}{{AC}}.\dfrac{{AD}}{{AC}}\)

Ta có : \(HE.MQ = HF.MP\)

\( \Rightarrow AH.BM.\dfrac{{BD}}{{AB}}.\dfrac{{AD}}{{AB}} = AH.MC.\dfrac{{DC}}{{AC}}.\dfrac{{AD}}{{AC}} \Rightarrow \dfrac{{BM}}{{MC}}.\dfrac{{BD}}{{DC}} = {\left( {\dfrac{{AB}}{{AC}}} \right)^2}\;.\)

Câu 12 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

:   \(\)   

*)  Xét tứ giác \(HDCE\) có: \(\left\{ \begin{array}{l}\angle HEC = {90^o}\\\angle HDC = {90^o}\end{array} \right. \Rightarrow \angle HEC + \angle HDC = {180^o}\)

Suy ra tứ giác \(HDCE\) nội tiếp đường tròn \( \Rightarrow \angle HDE = \angle HCE\) ( 2 góc nội tiếp cùng chắn cung \(HE\))

Chứng minh tương tự có \(\angle FBH = \angle FDH\)

Mà có \(\angle FBH = \angle HCE\) (do cùng phụ với \(\angle BAC\))

\( \Rightarrow \angle FDH = \angle HDE\) , suy ra \(HD\) là phân giác \(\angle FDE\)

Chứng minh tương tự ta có : \(HE\)là tia phân giác \(\angle FED\) ; \(FH\) là phân giác \(\angle DFE\)

Suy ra H là giao của 3 đường phân giác trong \(\Delta FDE\) , suy ra H là tâm đường tròn nội tiếp \(\Delta FDE\;\;\left( {dpcm} \right).\)

*) Kéo dài \(AO\) cắt \(\left( O \right)\) tại \(G.\)

Có\(\angle ACG = {90^o}\)(góc nội tiếp chắn nửa đường tròn)

Suy ra \(BH//GC\) (do cùng vuông góc với ${\rm{AC}}$)

Chứng minh tương tự có \(HC//BG\)

\( \Rightarrow BHCG\) là hình bình hành  (do có 2 cặp cạnh đối song song)\( \Rightarrow \left\{ \begin{array}{l}BH = GC\\HC = BG\end{array} \right.\)

Xét \(\Delta ACG\) có : \(MQ//GC\) (do cùng vuông góc với ${\rm{AC}}$)

\( \Rightarrow \dfrac{{MQ}}{{GC}} = \dfrac{{AM}}{{AG}}\) (định lí Ta-lét)

Chứng minh tương tự có \(\dfrac{{PM}}{{BG}} = \dfrac{{AM}}{{AG}}\)

\(\)\( \Rightarrow \dfrac{{MQ}}{{GC}} = \dfrac{{PM}}{{BG}}\left( { = \dfrac{{AM}}{{AG}}} \right).\)

Mà có \(\left\{ \begin{array}{l}BH = GC\\HC = BG\end{array} \right. \Rightarrow \dfrac{{MQ}}{{BH}} = \dfrac{{PM}}{{HC}} \Rightarrow \dfrac{{MQ}}{{PM}} = \dfrac{{BH}}{{HC}}\;\;\;\;\;\;\left( 1 \right)\) \(\)

Xét \(\Delta FHB\) và \(\Delta EHC\) có:

 \(\angle FBH = \angle HCE\)  (do cùng phụ với \(\angle BAC\))

\(\angle BFH = \angle HEC = {90^o}\)

\( \Rightarrow \Delta FHB \backsim \Delta EHC\left( {g - g} \right) \Rightarrow \dfrac{{FH}}{{HE}} = \dfrac{{BH}}{{HC}}\)        (2)\(\)   \(\)

Từ (1) và (2) \( \Rightarrow \dfrac{{MQ}}{{PM}} = \dfrac{{FH}}{{HE}} \Rightarrow MQ.HE = HF.MP.\)

Vậy cả A, B đều đúng.

Câu 13 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

:   \(\)   

*)  Xét tứ giác \(HDCE\) có: \(\left\{ \begin{array}{l}\angle HEC = {90^o}\\\angle HDC = {90^o}\end{array} \right. \Rightarrow \angle HEC + \angle HDC = {180^o}\)

Suy ra tứ giác \(HDCE\) nội tiếp đường tròn \( \Rightarrow \angle HDE = \angle HCE\) ( 2 góc nội tiếp cùng chắn cung \(HE\))

Chứng minh tương tự có \(\angle FBH = \angle FDH\)

Mà có \(\angle FBH = \angle HCE\) (do cùng phụ với \(\angle BAC\))

\( \Rightarrow \angle FDH = \angle HDE\) , suy ra \(HD\) là phân giác \(\angle FDE\)

Chứng minh tương tự ta có : \(HE\)là tia phân giác \(\angle FED\) ; \(FH\) là phân giác \(\angle DFE\)

Suy ra H là giao của 3 đường phân giác trong \(\Delta FDE\) , suy ra H là tâm đường tròn nội tiếp \(\Delta FDE\;\;\left( {dpcm} \right).\)

*) Kéo dài \(AO\) cắt \(\left( O \right)\) tại \(G.\)

Có\(\angle ACG = {90^o}\)(góc nội tiếp chắn nửa đường tròn)

Suy ra \(BH//GC\) (do cùng vuông góc với ${\rm{AC}}$)

Chứng minh tương tự có \(HC//BG\)

\( \Rightarrow BHCG\) là hình bình hành  (do có 2 cặp cạnh đối song song)\( \Rightarrow \left\{ \begin{array}{l}BH = GC\\HC = BG\end{array} \right.\)

Xét \(\Delta ACG\) có : \(MQ//GC\) (do cùng vuông góc với ${\rm{AC}}$)

\( \Rightarrow \dfrac{{MQ}}{{GC}} = \dfrac{{AM}}{{AG}}\) (định lí Ta-lét)

Chứng minh tương tự có \(\dfrac{{PM}}{{BG}} = \dfrac{{AM}}{{AG}}\)

\(\)\( \Rightarrow \dfrac{{MQ}}{{GC}} = \dfrac{{PM}}{{BG}}\left( { = \dfrac{{AM}}{{AG}}} \right).\)

Mà có \(\left\{ \begin{array}{l}BH = GC\\HC = BG\end{array} \right. \Rightarrow \dfrac{{MQ}}{{BH}} = \dfrac{{PM}}{{HC}} \Rightarrow \dfrac{{MQ}}{{PM}} = \dfrac{{BH}}{{HC}}\;\;\;\;\;\;\left( 1 \right)\) \(\)

Xét \(\Delta FHB\) và \(\Delta EHC\) có:

 \(\angle FBH = \angle HCE\)  (do cùng phụ với \(\angle BAC\))

\(\angle BFH = \angle HEC = {90^o}\)

\( \Rightarrow \Delta FHB \backsim \Delta EHC\left( {g - g} \right) \Rightarrow \dfrac{{FH}}{{HE}} = \dfrac{{BH}}{{HC}}\)        (2)\(\)   \(\)

Từ (1) và (2) \( \Rightarrow \dfrac{{MQ}}{{PM}} = \dfrac{{FH}}{{HE}} \Rightarrow MQ.HE = HF.MP.\)

Vậy cả A, B đều đúng.

Câu 14 Trắc nghiệm

Khi tam giác $ABC$ là tam giác đều. Hãy tính diện tích tam giác $ADE$ theo $R.$

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(\Delta ABC\;\;\)đều, khi đó $A,{\rm{ }}O,{\rm{ }}M,{\rm{ }}F$ thẳng hàng, $AF$ vuông góc với $DE$ tại $F.$\( \Rightarrow \)  \({S_{\Delta ADE}}\) $ = \dfrac{1}{2}DE.AF$

\(\Delta ABC\;\;\)đều nên ta có: $\widehat {CAB} = {60^0}$ mà $\widehat {CBP} = \widehat {CAB} = {60^0}$(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BC)

\( \Rightarrow AM = MP;MF = \dfrac{1}{2}MP\)

 có \(AB = \;\sqrt {A{M^2} + \;M{B^{2\;}}} \) \( \Rightarrow AB = R\sqrt 3 \)

\(OA = R \Rightarrow AM = \dfrac{3}{2}OA = \dfrac{3}{2}R \Rightarrow AF = \dfrac{3}{2}R + \dfrac{3}{4}R = \dfrac{9}{4}R\)

\(\Delta ABC\;\;\backsim\;\Delta ADE\)  \( \Rightarrow \)  \(\dfrac{{BC}}{{DE}} = \dfrac{{AM}}{{AF}} = \dfrac{2}{3} \Rightarrow DE = \dfrac{{3\sqrt 3 }}{2}R\)

\( \Rightarrow {S_{\Delta ADE}} = \dfrac{1}{2}DE.AF = \dfrac{{27\sqrt 3 }}{{16}}{R^2}\) .

Câu 15 Trắc nghiệm

Đường thẳng \(DE\)  đi qua điểm cố định nào ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

 

\(\;\widehat {A\;} = \;\widehat {CBP}\;\) cùng chắn cung \(BC\)

Ta có. \(\widehat A\) + \(\widehat {ABC}\) + \(\widehat {ACB} = {180^0}\;\) (tổng ba góc trong tam giác)

Có \(\widehat {CBP}\) + \(\widehat {ABC}\;\)+ \(\widehat {PBD}\) = \({180^0}\) (vì A, B, D thẳng hàng)

\( \Rightarrow \widehat {ACB}\;\)=  \(\widehat {PBD}\)

Mà \(\widehat {ACB}\;\) = \(\widehat {MPE}\) (cùng phụ góc $ECM$ )

\(\widehat {PBD}\) = \(\widehat {MPE}\)(cùng chắn cung $BD$ )

=> \(\widehat {MPE}\;\)= \(\widehat {MPE}\)

Mà 2 góc trên ở vị trí so le trong  \( \Rightarrow MD//EP\)

Mặt khác ta xét hai tam giác  \(\Delta MEP\;;\;\Delta PDM\)  ta chứng minh được \(\widehat {EMP} = \;\widehat {MPD}\)

Mà 2 góc lại ở vị trí so le trong  nên  \(ME//PD\)

Vậy tứ giác $EMDP$ là hình bình hành

\( \Rightarrow ED\)  đi qua trung điểm $F$ của $MP$

Vì $B,{\rm{ }}C$ cố định \( \Rightarrow M,P\) cố định \( \Rightarrow \)  trung điểm $F$ của $MP$ cố định

Câu 16 Trắc nghiệm

Góc \(MEP\)  bằng với góc nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có M là trung điểm của cạnh BC $ \Rightarrow OM \bot BC$ (liên hệ đường kính và dây cung)

Ta có tứ giác BMPD nội tiếp ( vì \(\widehat {BDP}\)+ \(\widehat {BMP}\)=1800) \( \Rightarrow \widehat {MDP}\) = \(\widehat {MBP}\)  (tính chất của tứ giác nội tiếp) (1)

Tương tự có tứ giác  MCEP nội tiếp => \(\widehat {MEP}\) = \(\widehat {MCP}\)  (tính chất của tứ giác nội tiếp) (2)

Mà tiếp tuyến tại B và C cắt nhau tại P  nên dễ dàng suy ra được \(\Delta BPC\;\)cân tại P ( tính chất 2 tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {MCP}{\rm{\;}} = \;\widehat {MBP}\;\left( 3 \right)\)

Từ (1); (2);(3) => \(\widehat {MEP}\) = \(\widehat {MDP}\)

Câu 17 Trắc nghiệm

Góc \(MEP\)  bằng với góc nào dưới đây?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có M là trung điểm của cạnh BC $ \Rightarrow OM \bot BC$ (liên hệ đường kính và dây cung)

Ta có tứ giác BMPD nội tiếp ( vì \(\widehat {BDP}\)+ \(\widehat {BMP}\)=1800) \( \Rightarrow \widehat {MDP}\) = \(\widehat {MBP}\)  (tính chất của tứ giác nội tiếp) (1)

Tương tự có tứ giác  MCEP nội tiếp => \(\widehat {MEP}\) = \(\widehat {MCP}\)  (tính chất của tứ giác nội tiếp) (2)

Mà tiếp tuyến tại B và C cắt nhau tại P  nên dễ dàng suy ra được \(\Delta BPC\;\)cân tại P ( tính chất 2 tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {MCP}{\rm{\;}} = \;\widehat {MBP}\;\left( 3 \right)\)

Từ (1); (2);(3) => \(\widehat {MEP}\) = \(\widehat {MDP}\)

Câu 18 Trắc nghiệm

Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp tam giác, K là tâm đường tròn bàng tiếp góc A và O là trung điểm của IK.

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên $\widehat {ICK} = {90^0}$

Chứng minh hoàn toàn tương tự ta có: $\widehat {IBK} = {90^0}$

Xét tứ giác BICK ta có: \(\widehat {IBK} + \widehat {ICK} = {90^0} + {90^0} = {180^0}.\)

\( \Rightarrow BICK\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\))

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC hay bốn điểm B, I, C, K cùng thuộc (O)

+) Ta có : Tam giác IOC cân tại O nên : $\widehat {OIC} = \widehat {OCI}.$

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

$\widehat {OIC} = \widehat {IAC} + \widehat {ACI} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC}$

$ \Rightarrow \widehat {ICO} + \widehat {ICA} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}{.180^0} = {90^0}$

$ \Rightarrow OC \bot CA.$

Do đó AC là tiếp tuyến của (O) tại C.

Cả A, B đều đúng.

Câu 19 Trắc nghiệm

Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp tam giác, K là tâm đường tròn bàng tiếp góc A và O là trung điểm của IK.

Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ $CI,{\rm{ }}IB,{\rm{ }}BK,{\rm{ }}KC$ và các dây cung tương ứng của $\left( O \right)$ biết $AB = 20,{\rm{ }}BC = 24.$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là \(S'\) , gọi giao điểm $BC$ và $IK$ là $M.$

Ta có ngay :

$\begin{array}{l}S = S' - {S_{ICKB}} = \pi I{O^2} - {S_{IBK}} - {S_{IKC}}\\ = \pi \dfrac{{I{K^2}}}{4} - \dfrac{{BM.IK}}{2} - \dfrac{{CM.IK}}{2}\\ = \pi \dfrac{{I{K^2}}}{4} - \dfrac{{BC.IK}}{2}.\end{array}$

Ta có :

\(\begin{array}{l}\;\;\;\;\;{S_{ABC}} = \dfrac{1}{2}AM.BC = \dfrac{{AB + BC + CA}}{2}.IM\\ \Leftrightarrow \sqrt {A{B^2} - B{M^2}} .24 = \left( {AB + BC + CA} \right).IM\\ \Leftrightarrow \sqrt {{{20}^2} - {{\left( {\dfrac{{24}}{2}} \right)}^2}} .24 = \left( {20.2 + 24} \right).IM\\ \Leftrightarrow IM = 6.\end{array}\)

Áp dụng hệ thức lượng trong tam giác \(IBM\) vuông tại \(B\) có đường cao \(BM\) ta có :

\(\begin{array}{l}B{M^2} = IM.MK \Leftrightarrow MK = \dfrac{{B{M^2}}}{{IM}} = \dfrac{{{{12}^2}}}{6} = 24.\\ \Rightarrow IM = IM + MK = 6 + 24 = 30.\\ \Rightarrow S = \dfrac{1}{4}\pi I{K^2} - \dfrac{1}{2}BC.IK = \dfrac{1}{4}\pi {.30^2} - \dfrac{1}{2}.24.30\\ = 225\pi  - 360\;\;\left( {dvdt} \right).\end{array}\)

Câu 20 Trắc nghiệm

Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên $\widehat {ICK} = {90^0}$

Chứng minh hoàn toàn tương tự ta có: $\widehat {IBK} = {90^0}$

Xét tứ giác BICK ta có: \(\widehat {IBK} + \widehat {ICK} = {90^0} + {90^0} = {180^0}.\)

\( \Rightarrow BICK\) là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng \({180^0}\))

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC hay bốn điểm B, I, C, K cùng thuộc (O)

+) Ta có : Tam giác IOC cân tại O nên : $\widehat {OIC} = \widehat {OCI}.$

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

$\widehat {OIC} = \widehat {IAC} + \widehat {ACI} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC}$

$ \Rightarrow \widehat {ICO} + \widehat {ICA} = \dfrac{1}{2}\widehat {BAC} + \dfrac{1}{2}\widehat {ABC} + \dfrac{1}{2}\widehat {ACB} = \dfrac{1}{2}{.180^0} = {90^0}$

$ \Rightarrow OC \bot CA.$

Do đó AC là tiếp tuyến của (O) tại C.

Cả A, B đều đúng.