Tứ giác nội tiếp

Câu 1 Trắc nghiệm

Lấy điểm \(N\) thuộc đoạn thẳng \(AB\)( \(N\) khác \(A\), \(N\) khác \(B\)). Lấy điểm \(P\) thuộc tia đối của \(MB\) sao cho \(MP = AN\). Tam tam giác \(CPN\) là tam giác gì? Đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng nào?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét tam giác \(CAN\) và tam giác \(CMP\) có:

\(AN = MP\,\,\,\,\left( {gt} \right)\)

\(\angle CAN = \angle CMP = {90^0}\)

\(AC = CM\)(\(A,M\) cùng thuộc đường tròn \(\left( {C;\,\,CA} \right)\))

\( \Rightarrow \Delta CAN = \Delta CMP\,\,\,\left( {c - g - c} \right)\)

\( \Rightarrow CN = CP\)(2 cạnh tương ứng bằng nhau).

\( \Rightarrow \Delta CNP\) cân tại \(C\).

Gọi \(E\) là giao điểm của \(AM\) và \(PN\).

Vì \(\Delta CAN = \Delta CMP\,\,\,\left( {cmt} \right)\) nên:

\(\angle ACN = \angle MCP\)(2 góc tương ứng bằng nhau)

\( \Rightarrow \angle ACM = \angle ACN + \angle NCM\) \( = \angle PCM + \angle MCN = \angle NCP\)

\( \Rightarrow \)\(\Delta ACM\) và \(\Delta CNP\) là hai tam giác cân đỉnh \(C\) có \(\angle ACM = \angle PCN\)

\( \Rightarrow \angle CNP = \angle CAM\) (các góc ở đáy của các tam giác cân có góc ở đỉnh bằng nhau)

Hay \(\angle CAE = \angle CNE\)

\( \Rightarrow CANE\) là tứ giác nội tiếp. (tứ giác có hai đỉnh kề 1 cạnh cùng nhìn cạnh đối diện dưới các góc bằng nhau).

\( \Rightarrow \angle CEN = {90^0} \Rightarrow CE \bot PN\)

Mà \(\Delta CNP\) cân tại \(C\) (cmt)

\( \Rightarrow CE\) là đường cao, đồng thời là đường trung tuyến của \(\Delta CNP\)

\( \Rightarrow E\) là trung điểm của \(PN\)

Vậy đường thẳng \(AM\) đi qua trung điểm của đoạn thẳng \(NP\).

Câu 2 Trắc nghiệm

Chọn khẳng định đúng:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có: tam giác \(ABC\) vuông tại \(A\) nên \(\angle BAC = {90^0}\)

\(MB\) là tiếp tuyến của đường tròn \(\left( {C;CA} \right)\) nên \(\angle CMB = {90^0}\) (định nghĩa tiếp tuyến của đường tròn)

Xét tứ giác \(ACMB\) ta có: \(\angle CAB + \angle CMB = {90^0} + {90^0} = {180^0}\)

\( \Rightarrow ACMB\) là tứ giác nội tiếp đường tròn đường kính BC (tứ giác có tổng hai góc đối diện bằng \({180^0}\)).

Hay bốn điểm \(A,C,M\) và \(B\) cùng thuộc đường tròn đường kính \(BC\).

Câu 3 Trắc nghiệm

Khi đó mệnh đề đúng là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh). Đặt \(x = \widehat {BCE} = \widehat {DCF}.\)

Theo tính chất góc ngoài tam giác ta có:

\(\widehat {ABC} = x + {40^0}\,\,\left( 1 \right);\widehat {ADC} = x + {20^0}\,\,\left( 2 \right)\)

Lại có \(\widehat {ABC} + \widehat {ADC} = {180^0}\,\,\left( 3 \right)\) (hai góc đối diện của tứ giác nội tiếp).

Từ \(\left( 1 \right),\,\left( 2 \right)\) và \(\left( 3 \right)\) ta nhận được \(\left( {x + {{40}^0}} \right) + \left( {x + {{20}^0}} \right) = {180^0} \Rightarrow x = {60^0}\) .

Từ \(\left( 1 \right)\) ta có \(\widehat {ABC} = {60^0} + {40^0} = {100^0}\) .

Câu 4 Trắc nghiệm

Tứ giác \(AHCK\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tứ giác \(AHCK\) có \(\widehat {AHC} = 90^\circ \left( {AB \bot CD} \right);\widehat {AKC} = 90^\circ \left( {AK \bot FC} \right)\) nên \(\widehat {AHC} + \widehat {AKC} = 180^\circ  \Rightarrow \) Tứ giác \(AHCK\) nội tiếp.

Câu 5 Trắc nghiệm

$\left( I \right):$ Tứ giác \(ABMQ\) nội tiếp; $\left( {II} \right):$ Tứ giác \(ADNP\) nội tiếp. Chọn kết luận đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét hình vuông \(ABCD\) có \(\widehat {DBC} = \widehat {BDC} = 45^\circ \) (tính chất)

Xét tứ giác \(ABMQ\) có \(\widehat {QAM} = \widehat {QBM} = 45^\circ \) mà hai đỉnh \(A\) và \(B\) cùng nhìn đoạn thẳng \(MQ\) nên \(ABMQ\) là tứ giác nội tiếp.

Xét tứ giác \(APND\) có \(\widehat {PAN} = \widehat {PDN} = 45^\circ \) mà hai đỉnh \(A\) và ${\rm{D}}$ cùng nhìn đoạn thẳng \(PN\) nên \(APND\) là tứ giác nội tiếp.

Câu 6 Trắc nghiệm

Số đo góc \(\widehat {BAD}\)  là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh). Đặt \(x = \widehat {BCE} = \widehat {DCF}.\)

Theo tính chất góc ngoài tam giác ta có:

\(\widehat {ABC} = x + {40^0}\,\,\left( 1 \right);\widehat {ADC} = x + {20^0}\,\,\left( 2 \right)\)

Lại có \(\widehat {ABC} + \widehat {ADC} = {180^0}\,\,\left( 3 \right)\) (hai góc đối diện của tứ giác nội tiếp).

Từ \(\left( 1 \right),\,\left( 2 \right)\) và \(\left( 3 \right)\) ta nhận được \(\left( {x + {{40}^0}} \right) + \left( {x + {{20}^0}} \right) = {180^0} \Rightarrow x = {60^0} \Rightarrow \widehat {BCE} = 60^\circ \) .

 Do \(\widehat {BCD},\,\widehat {BCE}\) là hai góc kề bù nên

\(\widehat {BCD} + \,\widehat {BCE} = {180^0} \Rightarrow \widehat {BCD} = {180^0} - {60^0} = {120^0}\)

Ta lại có \(\widehat {BAD},\,\widehat {BCD}\) là hai góc đối diện của tứ giác nội tiếp nên

$\widehat {BAD} + \,\widehat {BCD} = {180^0} \Rightarrow \widehat {BAD} = {180^0} - {120^0} = {60^0}$

Cách khác:  

Xét tam giác \(ADE\), theo định lý về tổng ba góc trong tam giác, ta có: 

\(\widehat {BAD} + \widehat {CDA} + \widehat {AED} = {180^0}\)

\(\begin{array}{l}
\Rightarrow \widehat {BAD} + \widehat {CDA} + {40^0} = {180^0}\\
\Rightarrow \widehat {BAD} + \widehat {CDA} = {140^0}\,(1*)
\end{array}\)

Xét tam giác \(ABF\), theo định lý về tổng ba góc trong tam giác, ta có: 

\(\begin{array}{l}
\widehat {BAD} + \widehat {CBA} + \widehat {AFB} = {180^0}\\
\Rightarrow \widehat {BAD} + \widehat {CBA} + {20^0} = {180^0}\\
\Rightarrow \widehat {BAD} + \widehat {CBA} = {160^0}\,(2*)
\end{array}\)

Vì tứ giác \(ABCD\) nội tiếp đường tròn \((O)\) nên \(\widehat {ADC} + \widehat {CBA} = {180^0}\) (3*) (tổng hai góc đối bằng \(180^0\))

Từ \((1*), (2*)\) và (3*) ta có: 

\(\begin{array}{l}
\widehat {BAD} + \widehat {ADC} + \widehat {BAD} + \widehat {CBA} = {140^0} + {160^0}\\
\Rightarrow 2\widehat {BAD} + \left( {\widehat {ADC} + \widehat {CBA}} \right) = {300^0}\\
\Rightarrow 2\widehat {BAD} + {180^0} = {300^0}\\
\Rightarrow 2\widehat {BAD} = {120^0}\\
\Rightarrow \widehat {BAD} = {60^0}
\end{array}\)

 

Câu 7 Trắc nghiệm

Khi đó mệnh đề đúng là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh). Đặt \(x = \widehat {BCE} = \widehat {DCF}.\)

Theo tính chất góc ngoài tam giác ta có:

\(\widehat {ABC} = x + {40^0}\,\,\left( 1 \right);\widehat {ADC} = x + {20^0}\,\,\left( 2 \right)\)

Lại có \(\widehat {ABC} + \widehat {ADC} = {180^0}\,\,\left( 3 \right)\) (hai góc đối diện của tứ giác nội tiếp).

Từ \(\left( 1 \right),\,\left( 2 \right)\) và \(\left( 3 \right)\) ta nhận được \(\left( {x + {{40}^0}} \right) + \left( {x + {{20}^0}} \right) = {180^0} \Rightarrow x = {60^0}\) .

Từ \(\left( 1 \right)\) ta có \(\widehat {ABC} = {60^0} + {40^0} = {100^0}\) .

Câu 8 Trắc nghiệm

Khi đó mệnh đề đúng là

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh). Đặt \(x = \widehat {BCE} = \widehat {DCF}.\)

Theo tính chất góc ngoài tam giác ta có:

\(\widehat {ABC} = x + {40^0}\,\,\left( 1 \right);\widehat {ADC} = x + {20^0}\,\,\left( 2 \right)\)

Lại có \(\widehat {ABC} + \widehat {ADC} = {180^0}\,\,\left( 3 \right)\) (hai góc đối diện của tứ giác nội tiếp).

Từ \(\left( 1 \right),\,\left( 2 \right)\) và \(\left( 3 \right)\) ta nhận được \(\left( {x + {{40}^0}} \right) + \left( {x + {{20}^0}} \right) = {180^0} \Rightarrow x = {60^0}\) .

Từ \(\left( 1 \right)\) ta có \(\widehat {ABC} = {60^0} + {40^0} = {100^0}\) .

Câu 9 Trắc nghiệm

Tam giác \(ACF\) là tam giác

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Xét \(\left( O \right)\) có \(\widehat {EAC} = \widehat {EDC}\) (hai góc nội tiếp cùng chắn một cung)

Xét tứ giác nội tiếp \(AHCK\) có \(\widehat {KAC} = \widehat {KHC}\)  nên \(\widehat {EDC} = \widehat {KHC}\left( { = \widehat {KAC}} \right)\) mà hai góc ở vị trí đồng vị nên \(KH{\rm{//}}ED\)

Xét tam giác \(CFD\) có \(KH{\rm{//}}ED\)mà \(H\) là trung điểm của \(DC\) ( do \(AB \bot DC\)) nên \(K\) là trung điểm của \(CF\)

Xét tam giác \(ACF\) có \(AK\) vừa là đường trung tuyến vừa là đường cao nên \(\Delta ACF\) cân tại \(A\) .

Câu 10 Trắc nghiệm

Tích \(AH.AB\) bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Xét tam giác \(ADB\) có \(\widehat {ADB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta ADB\)  vuông tại \(D\)

Do đó \(A{D^2} = AH.AB\) (hệ thức lượng trong tam giác vuông)

Mà \(AD \ne BD;AD < AB\) nên phương án A, B, C sai.

Câu 11 Trắc nghiệm

Tứ giác \(AHCK\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tứ giác \(AHCK\) có \(\widehat {AHC} = 90^\circ \left( {AB \bot CD} \right);\widehat {AKC} = 90^\circ \left( {AK \bot FC} \right)\) nên \(\widehat {AHC} + \widehat {AKC} = 180^\circ  \Rightarrow \) Tứ giác \(AHCK\) nội tiếp.

Câu 12 Trắc nghiệm

Tứ giác \(AHCK\) là

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Tứ giác \(AHCK\) có \(\widehat {AHC} = 90^\circ \left( {AB \bot CD} \right);\widehat {AKC} = 90^\circ \left( {AK \bot FC} \right)\) nên \(\widehat {AHC} + \widehat {AKC} = 180^\circ  \Rightarrow \) Tứ giác \(AHCK\) nội tiếp.

Câu 13 Trắc nghiệm

Năm điểm nào sau đây cùng thuộc một đường tròn?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Từ kết quả câu trước ta suy ra \(\widehat {ADP} = \widehat {ANP} = {45^0},\widehat {QAM} = \widehat {QBM} = {45^0}\)\( \Rightarrow NP \bot AM,MQ \bot AN\). Tập hợp các điểm \(P,Q,C\) nhìn đoạn \(MN\) dưới một góc vuông, nên các điểm này nằm trên đường tròn đường kính \(MN\).

Câu 14 Trắc nghiệm

$\left( I \right):$ Tứ giác \(ABMQ\) nội tiếp; $\left( {II} \right):$ Tứ giác \(ADNP\) nội tiếp. Chọn kết luận đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét hình vuông \(ABCD\) có \(\widehat {DBC} = \widehat {BDC} = 45^\circ \) (tính chất)

Xét tứ giác \(ABMQ\) có \(\widehat {QAM} = \widehat {QBM} = 45^\circ \) mà hai đỉnh \(A\) và \(B\) cùng nhìn đoạn thẳng \(MQ\) nên \(ABMQ\) là tứ giác nội tiếp.

Xét tứ giác \(APND\) có \(\widehat {PAN} = \widehat {PDN} = 45^\circ \) mà hai đỉnh \(A\) và ${\rm{D}}$ cùng nhìn đoạn thẳng \(PN\) nên \(APND\) là tứ giác nội tiếp.

Câu 15 Trắc nghiệm

$\left( I \right):$ Tứ giác \(ABMQ\) nội tiếp; $\left( {II} \right):$ Tứ giác \(ADNP\) nội tiếp. Chọn kết luận đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét hình vuông \(ABCD\) có \(\widehat {DBC} = \widehat {BDC} = 45^\circ \) (tính chất)

Xét tứ giác \(ABMQ\) có \(\widehat {QAM} = \widehat {QBM} = 45^\circ \) mà hai đỉnh \(A\) và \(B\) cùng nhìn đoạn thẳng \(MQ\) nên \(ABMQ\) là tứ giác nội tiếp.

Xét tứ giác \(APND\) có \(\widehat {PAN} = \widehat {PDN} = 45^\circ \) mà hai đỉnh \(A\) và ${\rm{D}}$ cùng nhìn đoạn thẳng \(PN\) nên \(APND\) là tứ giác nội tiếp.

Câu 16 Trắc nghiệm

Cho tứ giác ABCD nội tiếp. Chọn câu sai:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) $\widehat {BAD} + \widehat {BCD} = {180^ \circ }$(tổng hai góc đối)

+) $\widehat {ABD} = \widehat {ACD}$ (hai góc nội tiếp cùng chắn cung AD)

+)$\widehat A + \widehat B + \widehat C + \widehat D = {360^0}$(tổng 4 góc trong tứ giác).

Câu 17 Trắc nghiệm

Cho tứ giác ABCD có số đo các góc A, B, C, D lần lượt như sau. Trường hợp nào thì tứ giác ABCD có thể là tứ giác nội tiếp.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Xét các đáp án ta có:

+) Đáp án A: \(\left\{ \begin{array}{l}\widehat A + \widehat C = {50^0} + {130^0} = {180^0}\\\widehat B + \widehat D = {60^0} + {140^0} = {200^0}\end{array} \right. \Rightarrow \) loại đáp án A.

+) Đáp án B: \(\left\{ \begin{array}{l}\widehat A + \widehat C = {65^0} + {115^0} = {180^0}\\\widehat B + \widehat D = {85^0} + {95^0} = {180^0}\end{array} \right. \Rightarrow \) đáp án B đúng.

+) Đáp án C: \(\left\{ \begin{array}{l}\widehat A + \widehat C = {82^0} + {98^0} = {180^0}\\\widehat B + \widehat D = {90^0} + {100^0} = {190^0}\end{array} \right. \Rightarrow \) loại đáp án C.

Câu 18 Trắc nghiệm

Cho tam giác ABC vuông tại A đường cao AH. Kẻ HE vuông góc với AB taị E. kẻ HF vuông góc với AC tại F. Chọn câu đúng:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét tứ giác AEHF có:

\(\widehat A = \widehat E = \widehat F = {90^0}\)

\( \Rightarrow \)Tứ giác AEHF là hình chữ nhật (dhnb).

\( \Rightarrow \) Tứ giác AEHF là tứ giác nội tiếp (có tổng hai góc đối diện bằng \({180^0}\))

$ \Rightarrow \widehat {{\rm{AF}}E} = \widehat {AHE}$ (hai góc cùng nhìn đoạn AE).

$\widehat {{\rm{AHE}}} = \widehat {ABH}$ (cùng phụ $\widehat {{\rm{BHE}}}$)

$ \Rightarrow \widehat {{\rm{AF}}E} = \widehat {ABC}\;\;\;\left( { = \widehat {AHE}} \right)$.

Xét tứ giác BEFC có: \(\widehat {AFE}\) là góc ngoài tại đỉnh \(F\) và \(\widehat {AFE} = \widehat {ABC}\;\;\;\left( {cmt} \right).\)

$ \Rightarrow $BEFC nội tiếp (dấu hiệu nhận biết).

Câu 19 Trắc nghiệm

Tứ giác $ABCD$ nội tiếp đường tròn có hai cạnh đối $AB$ và $CD$ cắt nhau tại $M$ và $\widehat {BAD} = {80^0}$ thì $\widehat {BCM} = ?$

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Tứ giác $ABCD$ nội tiếp nên có:  $\widehat {DAB} + \widehat {BCD} = {180^0}$$ \Rightarrow \widehat {BCD} = {180^0} - {80^0} = {100^0}$

Mà $\widehat {BCD} + \widehat {BCM} = {180^0}$(kề bù) $ \Rightarrow \widehat {BCM} = {180^0} - {100^0} = {80^0}$

Câu 20 Trắc nghiệm

Cho điểm A nằm ngoài đường tròn (O) qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là tiếp điểm) . Chọn đáp án đúng:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có AB và AC là hai tiếp tuyến cắt nhau

\( \Rightarrow AB = AC\) (tính chất hai tiếp tuyến cắt nhau)

Xét tứ giác ABOC có: $\left\{ \begin{array}{l}AB = AC\;\;\left( {cmt} \right)\\OB = OC\;\;\;\left( { = R} \right)\end{array} \right.$

$ \Rightarrow $ tứ giác ABOC chưa là hình thoi và không là hình bình hành.

$ \Rightarrow $đáp án A, D sai.

Có $\widehat {{\rm{ABO}}} = {90^0}$(do AB là tiếp tuyến của (O))

$\widehat {{\rm{ACO}}} = {90^0}$(do AC là tiếp tuyến của (O))

$ \Rightarrow \widehat {{\rm{ABO}}} + \widehat {ACO} = {180^0}$ $ \Rightarrow $tứ giác ABOC nội tiếp (dhnb).

\( \Rightarrow \) đáp án B đúng.