Tìm tất cả các giá trị của tham số \(m\) sao cho phương trình có bốn nghiệm đôi một phân biệt.
Nếu \(x = 0\) phương trình đã cho thành: \({\left( {m + 1} \right)^2} = 0\)
Khi \(m \ne - 1\) phương trình vô nghiệm.
Khi \(m = - 1\) thì \(x = 0\) là một nghiệm của phương trình đã cho và khi đó phương trình đã cho có dạng \({x^4} + {x^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\). Trong trường hợp này phương trình chỉ có hai nghiệm nên không thỏa mãn yêu cầu bài toán.
Do đó \(x \ne 0\) và \(m \ne - 1\). Chia hai vế của phương trình cho \({x^2} \ne 0\) và đặt \(t = x + \dfrac{{\left( {m + 1} \right)}}{x}\). Ta thu được phương trình: \({t^2} - mt - \left( {m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = m + 1\end{array} \right.\)
Với \(t = - 1\) ta được \({x^2} + x + \left( {m + 1} \right) = 0\) (1)
Với \(t = m + 1\) ta được \({x^2} - \left( {m + 1} \right)x + \left( {m + 1} \right) = 0\) (2)
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi mỗi một trong các phương trình (1) và (2) đều có hai nghiệm phân biệt, đồng thời chúng không có nghiệm chung.
Để (1) và (2) có hai nghiệm phân biệt khi và chỉ khi:
\(\left\{ \begin{array}{l}1 - 4\left( {m + 1} \right) > 0\\{\left( {m + 1} \right)^2} - 4\left( {m + 1} \right) > 0\end{array} \right. \Leftrightarrow m < - 1\) (*)
Khi đó nếu \({x_0}\) là một nghiệm chung của (1) và (2) thì: \(\left\{ \begin{array}{l}\left( {m + 1} \right) = - x_0^2 - {x_0}\\\left( {m + 1} \right) = - x_0^2 + \left( {m + 1} \right){x_0}\end{array} \right.\)
Suy ra \(\left( {m + 2} \right){x_0} = 0\) điều này tương đương với hoặc \(m = - 2\) hoặc \({x_0} = 0\).
Nếu \({x_0} = 0\) thì \(m = - 1\) (không thỏa mãn).
Nếu \(m = - 2\) thì (1) và (2) cùng có hai nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\)
Do đó kết hợp với (*), suy ra phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi \( - 2 \ne m < - 1\).
Giải phương trình khi \(m = - 2\).
Khi \(m = - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)
Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình
Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)
Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t = - 1\). Với \(t = - 1\) ta được \(x - \dfrac{1}{x} = - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m = - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).
Giải phương trình khi \(m = - 2\).
Khi \(m = - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)
Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình
Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)
Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t = - 1\). Với \(t = - 1\) ta được \(x - \dfrac{1}{x} = - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m = - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).
Giá trị nhỏ nhất và lớn nhất của biểu thức \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}}\) lần lượt là:
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {m^2} - 2\left( {m - 1} \right) = {m^2} - 2m + 2\).
Suy ra \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}} = \dfrac{{2m + 1}}{{{m^2} + 2}}\). Vì \(A - 1 = \dfrac{{2m + 1}}{{{m^2} + 2}} - 1 = \dfrac{{2m + 1 - {m^2} - 2}}{{{m^2} + 2}} = - \dfrac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 2}} \le 0\) với mọi \(m \in \mathbb{R}\)
Suy ra \(A \le 1\) với mọi \( m \in \mathbb{R}\). Dấu “=” xảy ta khi và chỉ khi \(m = 1\)
Và \(A + \dfrac{1}{2} = \dfrac{{2m + 1}}{{{m^2} + 2}} + \dfrac{1}{2} = \dfrac{{2\left( {m + 1} \right) + {m^2} + 2}}{{2\left( {{m^2} + 2} \right)}} = \dfrac{{{{\left( {m + 2} \right)}^2}}}{{2\left( {{m^2} + 2} \right)}} \ge 0\) với mọi \(m \in \mathbb{R}\)
Suy ra \(A \ge - \dfrac{1}{2}\) với mọi \(m \in \mathbb{R}\). Dấu “=” xảy ra khi và chỉ khi \(m = - 2\).
Vậy GTLN của \(A\) bằng \(1\) khi \(m = 1\) và GTNN của \(A\) bằng \( - \dfrac{1}{2}\) khi \(m = - 2\).
Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)
Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).
Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)
Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).
Giải phương trình khi \(m = - 2\).
Khi \(m = - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)
Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình
Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)
Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t = - 1\). Với \(t = - 1\) ta được \(x - \dfrac{1}{x} = - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m = - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).
Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)
Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).
Phân tích đa thức \(f\left( x \right) = {x^4} - 2m{x^2} - x + {m^2} - m\) thành tích của hai tam thức bậc hai ẩn \(x\).
Ta có \({x^4} - 2m{x^2} - x + {m^2} - m = 0 \)\(\Leftrightarrow {m^2} - \left( {2{x^2} + 1} \right)m + {x^4} - x = 0\)
Ta coi đây là phương trình bậc hai ẩn \(m\) và có:
\({\Delta _m} = {\left( {2{x^2} + 1} \right)^2} - 4\left( {{x^4} - x} \right) = 4{x^2} + 4x + 1 \)\(= {\left( {2x + 1} \right)^2} \ge 0\)
Suy ra \(f\left( x\right) = 0 \Leftrightarrow m = \dfrac{{2{x^2} + 1 + 2x + 1}}{2} = {x^2} + x + 1\) hoặc \(m = \dfrac{{2{x^2} + 1 - 2x - 1}}{2} = {x^2} - x\).
Do đó \(f\left( x \right) = \left( {m - {x^2} - x - 1} \right)\left( {m - {x^2} + x} \right)\).
Cho phương trình \({x^2} - 4x = 2\left| {x - 2} \right| - m - 5\), với \(m\) là tham số. Xác định \(m\) để phương trình có bốn nghiệm phân biệt.
Ta có \({x^2} - 4x = 2\left| {x - 2} \right| - m - 5 \Leftrightarrow \left( {{x^2} - 4x + 4} \right) - 2\left| {x - 2} \right| = - m - 1\)
\( \Leftrightarrow {\left( {x - 2} \right)^2} - 2\left| {x - 2} \right| = - m - 1\) (1)
Đặt \(t = \left| {x - 2} \right| \ge 0\). Khi đó (1) thành: \({t^2} - 2t + 1 + m = 0\) (2)
Để (1) có 4 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tức là phải có:\(\left\{ \begin{array}{l}\Delta > 0\\P > 0\\S > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4m > 0\\1 + m > 0\\2 > 0\end{array} \right. \Leftrightarrow - 1 < m < 0\) thỏa mãn yêu cầu bài toán.
Tìm m để phương trình $3{x^2} + 4\left( {m - 1} \right)x + {m^2} - 4m + 1 = 0$ có hai nghiệm phân biệt${x_1},{x_2}$ thỏa mãn:$\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right)$.
Trước hết phương trình phải có hai nghiệm phân biệt \(x_1;x_2\) khác 0 nên:
$\left\{ \begin{array}{l}\Delta ' = {m^2} + 4m + 1 > 0\\\dfrac{c}{a} = \dfrac{{{m^2} - 4m + 1}}{3} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 1 > 0\\{m^2} - 4m + 1 \ne 0\end{array} \right.$ (*).
Khi đó theo định lý Viet ta có:$S = {x_1} + {x_2} = \dfrac{{4\left( {1 - m} \right)}}{3};P = {x_1}{x_2} = \dfrac{{{m^2} - 4m + 1}}{3}$
Ta có: $\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right) \Leftrightarrow \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right)$$ \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left( {{x_1}{x_2} - 2} \right) = 0$ (do ${x_1}{x_2} \ne 0$)
$ \Leftrightarrow \left[ \begin{array}{l}{x_1} + {x_2} = 0\\{x_1}{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\{m^2} - 4m - 5 = 0\end{array} \right. \Leftrightarrow m = 1;m = - 1;m = 5$
Thay vào (*) ta thấy \(m = - 1\) không thỏa mãn.
Vậy \(m = 1;m = 5\) là giá trị cần tìm.
Tìm các giá trị của \(m\) để phương trình \({x^2} - mx + {m^2} - m - 3 = 0\) có hai nghiệm \({x_1},{x_2}\) là độ dài các cạnh góc vuông của tam giác \(ABC\) tại \(A,\) biết độ dài cạnh huyền \(BC = 2\).
Vì độ dài cạnh của tam giác vuông là số dương nên \({x_1},{x_2} > 0\).
Điều kiện để phương trình có nghiệm là:
\(\Delta = {m^2} - 4\left( {{m^2} - m - 3} \right) \ge 0\)\( \Leftrightarrow 3{m^2} - 4m - 12 \le 0\) (1).
Theo định lý Viet, ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = m > 0\\{x_1}.{x_2} = {m^2} - m - 3 > 0\end{array} \right.\) (2)
Từ giả thiết suy ra \(x_1^2 + x_2^2 = 4 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} = 4\). Do đó \({m^2} - 2\left( {{m^2} - m - 3} \right) = 4 \Leftrightarrow {m^2} - 2m - 2 = 0 \Leftrightarrow m = 1 \pm \sqrt 3 \)
Thay \(m = 1 \pm \sqrt 3 \) vào (1) và (2) ta thấy chỉ có \(m = 1 + \sqrt 3 \) thỏa mãn.
Vậy giá trị cần tìm là \(m = 1 + \sqrt 3 \).
Cho phương trình \({x^4} - m{x^3} + \left( {m + 1} \right){x^2} - m\left( {m + 1} \right)x + {\left( {m + 1} \right)^2} = 0\).
Giải phương trình khi \(m = - 2\).
Khi \(m = - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)
Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình
Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)
Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t = - 1\). Với \(t = - 1\) ta được \(x - \dfrac{1}{x} = - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m = - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).
Cho phương trình \({x^4} - m{x^3} + \left( {m + 1} \right){x^2} - m\left( {m + 1} \right)x + {\left( {m + 1} \right)^2} = 0\).
Tìm tất cả các giá trị của tham số \(m\) sao cho phương trình có bốn nghiệm đôi một phân biệt.
Nếu \(x = 0\) phương trình đã cho thành: \({\left( {m + 1} \right)^2} = 0\)
Khi \(m \ne - 1\) phương trình vô nghiệm.
Khi \(m = - 1\) thì \(x = 0\) là một nghiệm của phương trình đã cho và khi đó phương trình đã cho có dạng \({x^4} + {x^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\). Trong trường hợp này phương trình chỉ có hai nghiệm nên không thỏa mãn yêu cầu bài toán.
Do đó \(x \ne 0\) và \(m \ne - 1\). Chia hai vế của phương trình cho \({x^2} \ne 0\) và đặt \(t = x + \dfrac{{\left( {m + 1} \right)}}{x}\). Ta thu được phương trình: \({t^2} - mt - \left( {m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = m + 1\end{array} \right.\)
Với \(t = - 1\) ta được \({x^2} + x + \left( {m + 1} \right) = 0\) (1)
Với \(t = m + 1\) ta được \({x^2} - \left( {m + 1} \right)x + \left( {m + 1} \right) = 0\) (2)
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi mỗi một trong các phương trình (1) và (2) đều có hai nghiệm phân biệt, đồng thời chúng không có nghiệm chung.
Để (1) và (2) có hai nghiệm phân biệt khi và chỉ khi:
\(\left\{ \begin{array}{l}1 - 4\left( {m + 1} \right) > 0\\{\left( {m + 1} \right)^2} - 4\left( {m + 1} \right) > 0\end{array} \right. \Leftrightarrow m < - 1\) (*)
Khi đó nếu \({x_0}\) là một nghiệm chung của (1) và (2) thì: \(\left\{ \begin{array}{l}\left( {m + 1} \right) = - x_0^2 - {x_0}\\\left( {m + 1} \right) = - x_0^2 + \left( {m + 1} \right){x_0}\end{array} \right.\)
Suy ra \(\left( {m + 2} \right){x_0} = 0\) điều này tương đương với hoặc \(m = - 2\) hoặc \({x_0} = 0\).
Nếu \({x_0} = 0\) thì \(m = - 1\) (không thỏa mãn).
Nếu \(m = - 2\) thì (1) và (2) cùng có hai nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\)
Do đó kết hợp với (*), suy ra phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi \( - 2 \ne m < - 1\).
Có bao nhiêu giá trị của \(m\) để phương trình ${x^2} - (2m + 1)x + {m^2} + 1 = 0\;\;\;\;\left( 1 \right)$
có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn ${({x_1} - {x_2})^2} = {x_1}$.
Để phương trình đã cho có 2 nghiệm phân biệt thì
$\begin{array}{l}\Delta > 0 \Leftrightarrow {(2m + 1)^2} - 4({m^2} + 1) > 0 \Leftrightarrow 4{m^2} + 4m + 1 - 4{m^2} - 4 > 0\\ \Leftrightarrow 4m - 3 > 0 \Leftrightarrow m > \dfrac{3}{4}.\end{array}$
Vậy \(m > \dfrac{3}{4}\) thì phương trình có hai nghiệm phân biệt.
Với \(m > \dfrac{3}{4}\) thì phương trình có hai nghiệm phân biệt \({x_1},\;\;{x_2}.\)
Theo hệ thức Vi-et ta có: $\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 1\\{x_1}{x_2} = {m^2} + 1\end{array} \right..$
$\begin{array}{l} \Rightarrow {({x_1} - {x_2})^2} = x_1^2 + x_2^2 - 2{x_1}{x_2} = {({x_1} + {x_2})^2} - 4{x_1}{x_2}\\\; = {(2m + 1)^2} - 4({m^2} + 1) = 4m - 3 = {x_1}\\ \Rightarrow {x_2} = 2m + 1 - {x_1} = 2m + 1 - 4m + 3 = 4 - 2m.\\ \Rightarrow {x_1}{x_2} = {m^2} + 1\\ \Leftrightarrow \left( {4m - 3} \right)\left( {4 - 2m} \right) = {m^2} + 1\\ \Leftrightarrow 16m - 8{m^2} - 12 + 6m = {m^2} + 1\\ \Leftrightarrow 9{m^2} - 22m + 13 = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {9m - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\9m - 13 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\;\;\left( {tm} \right)\\m = \dfrac{{13}}{9}\;\;\left( {tm} \right)\end{array} \right..\end{array}$
Vậy \(m = 1,\;\;m = \dfrac{{13}}{9}\) thỏa mãn điều kiện bài toán.
Cho phương trình \({x^2} - \left( {m - 1} \right)x - {m^2} + m - 2 = 0\), với \(m\) là tham số. Gọi hai nghiệm của phương trình đã cho là \({x_1},{x_2}\). Tìm \(m\) để biểu thức \(A = {\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} - {\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3}\) đạt giá trị lớn nhất.
+) Xét \(a.c = - {m^2} + m - 2 = - {\left( {m - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4} < 0\) với mọi \( m \in \mathbb{R}\)
Vậy phương trình luôn có hai nghiệm trái dấu với mọi \(m\).
+) Gọi hai nghiệm của phương trình đã cho là \({x_1},{x_2}\).
Vì phương trình luôn có hai nghiệm trái dấu nên \({x_1}{x_2} \ne 0\), do đó \(A\) được xác định với mọi \({x_1},{x_2}\).
Do \({x_1},{x_2}\) trái dấu nên \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} = - t\) với \(t > 0\), suy ra \({\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3} < 0\), suy ra \(A < 0\)
Đặt \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} = - t\), với \(t > 0\), suy ra \({\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3} = - \dfrac{1}{t}\). Khi đó \(A = - t - \dfrac{1}{t}\) mang giá trị âm và \(A\) đạt giá trị lớn nhất khi \( - A\) có giá trị nhỏ nhất.
Ta có \( - A = t + \dfrac{1}{t} \ge 2\) (BĐT Cô -si), suy ra \(A \le - 2\). Đẳng thức xảy ra khi và chỉ khi \(t = \dfrac{1}{t} \Leftrightarrow {t^2} = 1 \Rightarrow t = 1\). Với \(t = 1\), ta có \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} = - 1 \Leftrightarrow \dfrac{{{x_1}}}{{{x_2}}} = - 1 \Leftrightarrow {x_1} = - {x_2} \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow - \left( {m - 1} \right) = 0 \Leftrightarrow m = 1.\)
Vậy với \(m = 1\) thì biểu thức \(A\) đạt giá trị lớn nhất là \( - 2\).
Cho phương trình \({x^2} -mx + m - 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình.
Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)
Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).
Cho phương trình \({x^2} -mx + m - 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình.
Giá trị nhỏ nhất và lớn nhất của biểu thức \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}}\) lần lượt là:
Ta có \(\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).
Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).
Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)
Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {m^2} - 2\left( {m - 1} \right) = {m^2} - 2m + 2\).
Suy ra \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}} = \dfrac{{2m + 1}}{{{m^2} + 2}}\). Vì \(A - 1 = \dfrac{{2m + 1}}{{{m^2} + 2}} - 1 = \dfrac{{2m + 1 - {m^2} - 2}}{{{m^2} + 2}} = - \dfrac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 2}} \le 0\) với mọi \(m \in \mathbb{R}\)
Suy ra \(A \le 1\) với mọi \( m \in \mathbb{R}\). Dấu “=” xảy ta khi và chỉ khi \(m = 1\)
Và \(A + \dfrac{1}{2} = \dfrac{{2m + 1}}{{{m^2} + 2}} + \dfrac{1}{2} = \dfrac{{2\left( {m + 1} \right) + {m^2} + 2}}{{2\left( {{m^2} + 2} \right)}} = \dfrac{{{{\left( {m + 2} \right)}^2}}}{{2\left( {{m^2} + 2} \right)}} \ge 0\) với mọi \(m \in \mathbb{R}\)
Suy ra \(A \ge - \dfrac{1}{2}\) với mọi \(m \in \mathbb{R}\). Dấu “=” xảy ra khi và chỉ khi \(m = - 2\).
Vậy GTLN của \(A\) bằng \(1\) khi \(m = 1\) và GTNN của \(A\) bằng \( - \dfrac{1}{2}\) khi \(m = - 2\).
Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2{m^2} - 3m + 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là nghiệm của phương trình. Chọn câu đúng.
Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {2{m^2} - 3m + 1} \right) = - {m^2} + m = m\left( {1 - m} \right)\). Để phương trình có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 0 \le m \le 1\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2\left( {m - 1} \right)\) và \({x_1}{x_2} = 2{m^2} - 3m + 1\). Ta có \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \left| {2\left( {m - 1} \right) + 2{m^2} - 3m + 1} \right|\)\( = \left| {2{m^2} - m - 1} \right| = 2\left| {{m^2} - \dfrac{m}{2} - \dfrac{1}{2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right|\)
Vì \(0 \le m \le 1 \Leftrightarrow - \dfrac{1}{4} \le m - \dfrac{1}{4} \le \dfrac{3}{4}\) suy ra \({\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{{16}} \Leftrightarrow {\left( {m - \dfrac{1}{4}} \right)^2} - \dfrac{9}{{16}} \le 0\)
Do đó \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right| = 2\left| {\dfrac{9}{{16}} - {{\left( {m - \dfrac{1}{4}} \right)}^2}} \right| = \dfrac{9}{8} - 2{\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{8}\)
Dấu “=” xảy ra khi và chỉ khi \(m = \dfrac{1}{4}\).
Cho phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} + 1 = 0\), với \(m\) là tham số. Tìm tất cả các giá trị \(m \in \mathbb{Z}\) để phương trình có hai nghiệm phân biệt \({x_1},{x_2}\) sao cho biểu thức \(P = \dfrac{{{x_1}{x_2}}}{{{x_1} + {x_2}}}\) có giá trị là số nguyên.
Ta có \(\Delta = {\left( {2m + 1} \right)^2} - 4\left( {{m^2} + 1} \right) = 4m - 3\). Để phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow m > \dfrac{3}{4}\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2m + 1\) và \({x_1}{x_2} = {m^2} + 1\). Do đó \(P = \dfrac{{{x_1}{x_2}}}{{{x_1} + {x_2}}} = \dfrac{{{m^2} + 1}}{{2m + 1}} = \dfrac{{2m - 1}}{4} + \dfrac{5}{{4\left( {2m + 1} \right)}}\). Suy ra \(4P = 2m - 1 + \dfrac{5}{{2m + 1}}\). Do \(m > \dfrac{3}{4}\) nên \(2m + 1 > 1\)
Để \(P \in \mathbb{Z}\) thì ta phải có \(\left( {2m + 1} \right)\) là ước của \(5\), suy ra \(2m + 1 = 5 \Leftrightarrow m = 2\)
Thử lại với \(m = 2\), ta được \(P = 1\) (thỏa mãn).
Vậy \(m = 2\) là giá trị cần tìm thỏa mãn bài toán.