Tổng hợp câu hay và khó về hệ thức Vi-et

Câu 1 Trắc nghiệm

Tìm tất cả các giá trị của tham số \(m\) sao cho phương trình có bốn nghiệm đôi một phân biệt.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu \(x = 0\) phương trình đã cho thành: \({\left( {m + 1} \right)^2} = 0\)

Khi \(m \ne  - 1\) phương trình vô nghiệm.

Khi \(m =  - 1\) thì \(x = 0\) là một nghiệm của phương trình đã cho và khi đó phương trình đã cho có dạng \({x^4} + {x^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\end{array} \right.\). Trong trường hợp này phương trình chỉ có hai nghiệm nên không thỏa mãn yêu cầu bài toán.

Do đó \(x \ne 0\) và \(m \ne  - 1\). Chia hai vế của phương trình cho \({x^2} \ne 0\) và đặt \(t = x + \dfrac{{\left( {m + 1} \right)}}{x}\). Ta thu được phương trình: \({t^2} - mt - \left( {m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = m + 1\end{array} \right.\)

Với \(t =  - 1\) ta được \({x^2} + x + \left( {m + 1} \right) = 0\)   (1)

Với \(t = m + 1\) ta được \({x^2} - \left( {m + 1} \right)x + \left( {m + 1} \right) = 0\)   (2)

Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi mỗi một trong các phương trình (1) và (2) đều có hai nghiệm phân biệt, đồng thời chúng không có nghiệm chung.

 

Để (1) và (2) có hai nghiệm phân biệt khi và chỉ khi:

\(\left\{ \begin{array}{l}1 - 4\left( {m + 1} \right) > 0\\{\left( {m + 1} \right)^2} - 4\left( {m + 1} \right) > 0\end{array} \right. \Leftrightarrow m <  - 1\)     (*)

Khi đó nếu \({x_0}\) là một nghiệm chung của (1) và (2) thì: \(\left\{ \begin{array}{l}\left( {m + 1} \right) =  - x_0^2 - {x_0}\\\left( {m + 1} \right) =  - x_0^2 + \left( {m + 1} \right){x_0}\end{array} \right.\)

Suy ra \(\left( {m + 2} \right){x_0} = 0\) điều này tương đương với hoặc \(m =  - 2\) hoặc \({x_0} = 0\).

Nếu \({x_0} = 0\) thì \(m =  - 1\) (không thỏa mãn).

Nếu \(m =  - 2\) thì (1) và (2) cùng có hai nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\)

Do đó kết hợp với (*), suy ra phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi \( - 2 \ne m <  - 1\).

Câu 2 Trắc nghiệm

Giải phương trình khi \(m =  - 2\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khi \(m =  - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)

Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình

Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)

Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1\). Với \(t =  - 1\) ta được \(x - \dfrac{1}{x} =  - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m =  - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).

Câu 3 Trắc nghiệm

Giải phương trình khi \(m =  - 2\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khi \(m =  - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)

Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình

Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)

Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1\). Với \(t =  - 1\) ta được \(x - \dfrac{1}{x} =  - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m =  - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).

Câu 4 Trắc nghiệm

Giá trị nhỏ nhất và lớn nhất của biểu thức \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}}\) lần lượt là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {m^2} - 2\left( {m - 1} \right) = {m^2} - 2m + 2\).

Suy ra \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}} = \dfrac{{2m + 1}}{{{m^2} + 2}}\). Vì \(A - 1 = \dfrac{{2m + 1}}{{{m^2} + 2}} - 1 = \dfrac{{2m + 1 - {m^2} - 2}}{{{m^2} + 2}} =  - \dfrac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 2}} \le 0\) với mọi \(m \in \mathbb{R}\)

Suy ra \(A \le 1\) với mọi \( m \in \mathbb{R}\). Dấu “=” xảy ta khi và chỉ khi \(m = 1\) 

Và \(A + \dfrac{1}{2} = \dfrac{{2m + 1}}{{{m^2} + 2}} + \dfrac{1}{2} = \dfrac{{2\left( {m + 1} \right) + {m^2} + 2}}{{2\left( {{m^2} + 2} \right)}} = \dfrac{{{{\left( {m + 2} \right)}^2}}}{{2\left( {{m^2} + 2} \right)}} \ge 0\) với mọi \(m \in \mathbb{R}\)

Suy ra \(A \ge  - \dfrac{1}{2}\) với mọi \(m \in \mathbb{R}\). Dấu “=” xảy ra khi và chỉ khi \(m =  - 2\).

Vậy GTLN của \(A\) bằng \(1\) khi \(m = 1\) và GTNN của \(A\) bằng \( - \dfrac{1}{2}\) khi \(m =  - 2\).

Câu 5 Trắc nghiệm

Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)

Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).

Câu 6 Trắc nghiệm

Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)

Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).

Câu 7 Trắc nghiệm

Giải phương trình khi \(m =  - 2\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khi \(m =  - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)

Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình

Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)

Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1\). Với \(t =  - 1\) ta được \(x - \dfrac{1}{x} =  - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m =  - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).

Câu 8 Trắc nghiệm

Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)

Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).

Câu 9 Trắc nghiệm

Phân tích đa thức \(f\left( x \right) = {x^4} - 2m{x^2} - x + {m^2} - m\) thành tích của hai tam thức bậc hai ẩn \(x\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \({x^4} - 2m{x^2} - x + {m^2} - m = 0 \)\(\Leftrightarrow {m^2} - \left( {2{x^2} + 1} \right)m + {x^4} - x = 0\)

Ta coi đây là phương trình bậc hai ẩn \(m\) và có:

\({\Delta _m} = {\left( {2{x^2} + 1} \right)^2} - 4\left( {{x^4} - x} \right) = 4{x^2} + 4x + 1 \)\(= {\left( {2x + 1} \right)^2} \ge 0\)

Suy ra \(f\left( x\right) = 0 \Leftrightarrow m = \dfrac{{2{x^2} + 1 + 2x + 1}}{2} = {x^2} + x + 1\) hoặc \(m = \dfrac{{2{x^2} + 1 - 2x - 1}}{2} = {x^2} - x\).

Do đó \(f\left( x \right) = \left( {m - {x^2} - x - 1} \right)\left( {m - {x^2} + x} \right)\).

Câu 10 Trắc nghiệm

Cho phương trình \({x^2} - 4x = 2\left| {x - 2} \right| - m - 5\), với \(m\) là tham số. Xác định \(m\) để phương trình có bốn nghiệm phân biệt.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \({x^2} - 4x = 2\left| {x - 2} \right| - m - 5 \Leftrightarrow \left( {{x^2} - 4x + 4} \right) - 2\left| {x - 2} \right| =  - m - 1\)

\( \Leftrightarrow {\left( {x - 2} \right)^2} - 2\left| {x - 2} \right| =  - m - 1\)    (1)

Đặt \(t = \left| {x - 2} \right| \ge 0\). Khi đó (1) thành: \({t^2} - 2t + 1 + m = 0\)   (2)

Để (1) có 4 nghiệm phân biệt thì (2) có hai nghiệm phân biệt dương, tức là phải có:\(\left\{ \begin{array}{l}\Delta  > 0\\P > 0\\S > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 4m > 0\\1 + m > 0\\2 > 0\end{array} \right. \Leftrightarrow  - 1 < m < 0\) thỏa mãn yêu cầu bài toán.

Câu 11 Trắc nghiệm

Tìm m để phương trình $3{x^2} + 4\left( {m - 1} \right)x + {m^2} - 4m + 1 = 0$ có hai nghiệm phân biệt${x_1},{x_2}$ thỏa mãn:$\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right)$.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Trước hết phương trình phải có hai nghiệm phân biệt \(x_1;x_2\) khác 0 nên:

$\left\{ \begin{array}{l}\Delta ' = {m^2} + 4m + 1 > 0\\\dfrac{c}{a} = \dfrac{{{m^2} - 4m + 1}}{3} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 1 > 0\\{m^2} - 4m + 1 \ne 0\end{array} \right.$  (*).

Khi đó theo định lý Viet ta có:$S = {x_1} + {x_2} = \dfrac{{4\left( {1 - m} \right)}}{3};P = {x_1}{x_2} = \dfrac{{{m^2} - 4m + 1}}{3}$

Ta có: $\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right) \Leftrightarrow \dfrac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \dfrac{1}{2}\left( {{x_1} + {x_2}} \right)$$ \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left( {{x_1}{x_2} - 2} \right) = 0$ (do ${x_1}{x_2} \ne 0$)

$ \Leftrightarrow \left[ \begin{array}{l}{x_1} + {x_2} = 0\\{x_1}{x_2} - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\{m^2} - 4m - 5 = 0\end{array} \right. \Leftrightarrow m = 1;m =  - 1;m = 5$

Thay vào (*) ta thấy \(m =  - 1\) không thỏa mãn.

Vậy \(m = 1;m = 5\) là giá trị cần tìm.

Câu 12 Trắc nghiệm

Tìm các giá trị của \(m\) để phương trình \({x^2} - mx + {m^2} - m - 3 = 0\) có hai nghiệm \({x_1},{x_2}\) là độ dài các cạnh góc vuông của tam giác \(ABC\) tại \(A,\)  biết độ dài cạnh huyền \(BC = 2\).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Vì độ dài cạnh của tam giác vuông là số dương nên \({x_1},{x_2} > 0\).

Điều kiện để phương trình có nghiệm là:

\(\Delta  = {m^2} - 4\left( {{m^2} - m - 3} \right) \ge 0\)\( \Leftrightarrow 3{m^2} - 4m - 12 \le 0\) (1).

Theo định lý Viet, ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = m > 0\\{x_1}.{x_2} = {m^2} - m - 3 > 0\end{array} \right.\)  (2)

Từ giả thiết suy ra \(x_1^2 + x_2^2 = 4 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} = 4\). Do đó \({m^2} - 2\left( {{m^2} - m - 3} \right) = 4 \Leftrightarrow {m^2} - 2m - 2 = 0 \Leftrightarrow m = 1 \pm \sqrt 3 \)

Thay \(m = 1 \pm \sqrt 3 \) vào (1) và (2) ta thấy chỉ có \(m = 1 + \sqrt 3 \) thỏa mãn.

Vậy giá trị cần tìm là \(m = 1 + \sqrt 3 \).

Câu 13 Trắc nghiệm

Cho phương trình \({x^4} - m{x^3} + \left( {m + 1} \right){x^2} - m\left( {m + 1} \right)x + {\left( {m + 1} \right)^2} = 0\).

Giải phương trình khi \(m =  - 2\).

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khi \(m =  - 2\), ta có phương trình: \({x^4} + 2{x^3} - {x^2} - 2x + 1 = 0\)

Kiểm tra ta thấy \(x = 0\) không là nghiệm của phương trình

Chia hai vế của phương trình cho \({x^2}\) ta được: \({x^2} + \dfrac{1}{{{x^2}}} + 2\left( {1 - \dfrac{1}{x}} \right) - 1 = 0\)

Đặt \(t = x - \dfrac{1}{x}\), suy ra \({x^2} + \dfrac{1}{{{x^2}}} = {t^2} + 2\). Thay vào phương trình trên ta được: \({t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1\). Với \(t =  - 1\) ta được \(x - \dfrac{1}{x} =  - 1 \Leftrightarrow {x^2} + x - 1 = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\). Vậy với \(m =  - 2\) phương tình có nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\).

Câu 14 Trắc nghiệm

Cho phương trình \({x^4} - m{x^3} + \left( {m + 1} \right){x^2} - m\left( {m + 1} \right)x + {\left( {m + 1} \right)^2} = 0\).

Tìm tất cả các giá trị của tham số \(m\) sao cho phương trình có bốn nghiệm đôi một phân biệt.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu \(x = 0\) phương trình đã cho thành: \({\left( {m + 1} \right)^2} = 0\)

Khi \(m \ne  - 1\) phương trình vô nghiệm.

Khi \(m =  - 1\) thì \(x = 0\) là một nghiệm của phương trình đã cho và khi đó phương trình đã cho có dạng \({x^4} + {x^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\end{array} \right.\). Trong trường hợp này phương trình chỉ có hai nghiệm nên không thỏa mãn yêu cầu bài toán.

Do đó \(x \ne 0\) và \(m \ne  - 1\). Chia hai vế của phương trình cho \({x^2} \ne 0\) và đặt \(t = x + \dfrac{{\left( {m + 1} \right)}}{x}\). Ta thu được phương trình: \({t^2} - mt - \left( {m + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = m + 1\end{array} \right.\)

Với \(t =  - 1\) ta được \({x^2} + x + \left( {m + 1} \right) = 0\)   (1)

Với \(t = m + 1\) ta được \({x^2} - \left( {m + 1} \right)x + \left( {m + 1} \right) = 0\)   (2)

Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi mỗi một trong các phương trình (1) và (2) đều có hai nghiệm phân biệt, đồng thời chúng không có nghiệm chung.

 

Để (1) và (2) có hai nghiệm phân biệt khi và chỉ khi:

\(\left\{ \begin{array}{l}1 - 4\left( {m + 1} \right) > 0\\{\left( {m + 1} \right)^2} - 4\left( {m + 1} \right) > 0\end{array} \right. \Leftrightarrow m <  - 1\)     (*)

Khi đó nếu \({x_0}\) là một nghiệm chung của (1) và (2) thì: \(\left\{ \begin{array}{l}\left( {m + 1} \right) =  - x_0^2 - {x_0}\\\left( {m + 1} \right) =  - x_0^2 + \left( {m + 1} \right){x_0}\end{array} \right.\)

Suy ra \(\left( {m + 2} \right){x_0} = 0\) điều này tương đương với hoặc \(m =  - 2\) hoặc \({x_0} = 0\).

Nếu \({x_0} = 0\) thì \(m =  - 1\) (không thỏa mãn).

Nếu \(m =  - 2\) thì (1) và (2) cùng có hai nghiệm \(x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}\)

Do đó kết hợp với (*), suy ra phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi \( - 2 \ne m <  - 1\).

Câu 15 Trắc nghiệm

Có bao nhiêu giá trị của \(m\) để phương trình ${x^2} - (2m + 1)x + {m^2} + 1 = 0\;\;\;\;\left( 1 \right)$

 có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn ${({x_1} - {x_2})^2} = {x_1}$.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Để phương trình đã cho có 2 nghiệm phân biệt thì

$\begin{array}{l}\Delta  > 0 \Leftrightarrow {(2m + 1)^2} - 4({m^2} + 1) > 0 \Leftrightarrow 4{m^2} + 4m + 1 - 4{m^2} - 4 > 0\\ \Leftrightarrow 4m - 3 > 0 \Leftrightarrow m > \dfrac{3}{4}.\end{array}$

Vậy \(m > \dfrac{3}{4}\) thì phương trình có hai nghiệm phân biệt.

Với \(m > \dfrac{3}{4}\) thì phương trình có hai nghiệm phân biệt \({x_1},\;\;{x_2}.\)

Theo hệ thức Vi-et ta có: $\left\{ \begin{array}{l}{x_1} + {x_2} = 2m + 1\\{x_1}{x_2} = {m^2} + 1\end{array} \right..$

$\begin{array}{l} \Rightarrow {({x_1} - {x_2})^2} = x_1^2 + x_2^2 - 2{x_1}{x_2} = {({x_1} + {x_2})^2} - 4{x_1}{x_2}\\\; = {(2m + 1)^2} - 4({m^2} + 1) = 4m - 3 = {x_1}\\ \Rightarrow {x_2} = 2m + 1 - {x_1} = 2m + 1 - 4m + 3 = 4 - 2m.\\ \Rightarrow {x_1}{x_2} = {m^2} + 1\\ \Leftrightarrow \left( {4m - 3} \right)\left( {4 - 2m} \right) = {m^2} + 1\\ \Leftrightarrow 16m - 8{m^2} - 12 + 6m = {m^2} + 1\\ \Leftrightarrow 9{m^2} - 22m + 13 = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {9m - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\9m - 13 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\;\;\left( {tm} \right)\\m = \dfrac{{13}}{9}\;\;\left( {tm} \right)\end{array} \right..\end{array}$

Vậy \(m = 1,\;\;m = \dfrac{{13}}{9}\) thỏa mãn điều kiện bài toán.

Câu 16 Trắc nghiệm

Cho phương trình \({x^2} - \left( {m - 1} \right)x - {m^2} + m - 2 = 0\), với \(m\) là tham số. Gọi hai nghiệm của phương trình đã cho là \({x_1},{x_2}\). Tìm \(m\) để biểu thức \(A = {\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} - {\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3}\) đạt giá trị lớn nhất.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Xét \(a.c =  - {m^2} + m - 2 =  - {\left( {m - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4} < 0\) với mọi \( m \in \mathbb{R}\)

Vậy phương trình luôn có hai nghiệm trái dấu với mọi \(m\).

+) Gọi hai nghiệm của phương trình đã cho là \({x_1},{x_2}\).

Vì phương trình luôn có hai nghiệm trái dấu  nên \({x_1}{x_2} \ne 0\), do đó \(A\) được xác định với mọi \({x_1},{x_2}\).

Do \({x_1},{x_2}\) trái dấu nên \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} =  - t\) với \(t > 0\), suy ra \({\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3} < 0\), suy ra \(A < 0\)

Đặt \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} =  - t\), với \(t > 0\), suy ra \({\left( {\dfrac{{{x_2}}}{{{x_1}}}} \right)^3} =  - \dfrac{1}{t}\). Khi đó \(A =  - t - \dfrac{1}{t}\) mang giá trị âm và \(A\) đạt giá trị lớn nhất khi \( - A\) có giá trị nhỏ nhất.

Ta có \( - A = t + \dfrac{1}{t} \ge 2\) (BĐT Cô -si), suy ra \(A \le  - 2\). Đẳng thức xảy ra khi và chỉ khi \(t = \dfrac{1}{t} \Leftrightarrow {t^2} = 1 \Rightarrow t = 1\). Với \(t = 1\), ta có \({\left( {\dfrac{{{x_1}}}{{{x_2}}}} \right)^3} =  - 1 \Leftrightarrow \dfrac{{{x_1}}}{{{x_2}}} =  - 1 \Leftrightarrow {x_1} =  - {x_2} \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow  - \left( {m - 1} \right) = 0 \Leftrightarrow m = 1.\)

Vậy với \(m = 1\) thì biểu thức \(A\) đạt giá trị lớn nhất là \( - 2\).

Câu 17 Trắc nghiệm

Cho phương trình \({x^2} -mx + m - 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình.

Tìm hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Thay \(m = {x_1} + {x_2}\) vào \({x_1}{x_2} = m - 1\), ta được \({x_1}{x_2} = {x_1} + {x_2} - 1\)

Vậy hệ thức liên hệ giữa \({x_1},{x_2}\) không phụ thuộc vào \(m\) là \({x_1}{x_2} = {x_1} + {x_2} - 1\).

Câu 18 Trắc nghiệm

Cho phương trình \({x^2} -mx + m - 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình.

Giá trị nhỏ nhất và lớn nhất của biểu thức \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}}\) lần lượt là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\Delta  = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2} \ge 0\), với mọi \(m\).

Do đó phương trình luôn có nghiệm với mọi giá trị của \(m\).

Theo hệ thức Viet, ta có: \({x_1} + {x_2} = m\) và \({x_1}{x_2} = m - 1\)

Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {m^2} - 2\left( {m - 1} \right) = {m^2} - 2m + 2\).

Suy ra \(A = \dfrac{{2{x_1}{x_2} + 3}}{{x_1^2 + x_2^2 + 2\left( {{x_1}{x_2} + 1} \right)}} = \dfrac{{2m + 1}}{{{m^2} + 2}}\). Vì \(A - 1 = \dfrac{{2m + 1}}{{{m^2} + 2}} - 1 = \dfrac{{2m + 1 - {m^2} - 2}}{{{m^2} + 2}} =  - \dfrac{{{{\left( {m - 1} \right)}^2}}}{{{m^2} + 2}} \le 0\) với mọi \(m \in \mathbb{R}\)

Suy ra \(A \le 1\) với mọi \( m \in \mathbb{R}\). Dấu “=” xảy ta khi và chỉ khi \(m = 1\) 

Và \(A + \dfrac{1}{2} = \dfrac{{2m + 1}}{{{m^2} + 2}} + \dfrac{1}{2} = \dfrac{{2\left( {m + 1} \right) + {m^2} + 2}}{{2\left( {{m^2} + 2} \right)}} = \dfrac{{{{\left( {m + 2} \right)}^2}}}{{2\left( {{m^2} + 2} \right)}} \ge 0\) với mọi \(m \in \mathbb{R}\)

Suy ra \(A \ge  - \dfrac{1}{2}\) với mọi \(m \in \mathbb{R}\). Dấu “=” xảy ra khi và chỉ khi \(m =  - 2\).

Vậy GTLN của \(A\) bằng \(1\) khi \(m = 1\) và GTNN của \(A\) bằng \( - \dfrac{1}{2}\) khi \(m =  - 2\).

Câu 19 Trắc nghiệm

Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2{m^2} - 3m + 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là nghiệm của phương trình. Chọn câu đúng.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {2{m^2} - 3m + 1} \right) =  - {m^2} + m = m\left( {1 - m} \right)\). Để phương trình có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 0 \le m \le 1\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2\left( {m - 1} \right)\) và \({x_1}{x_2} = 2{m^2} - 3m + 1\). Ta có \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \left| {2\left( {m - 1} \right) + 2{m^2} - 3m + 1} \right|\)\( = \left| {2{m^2} - m - 1} \right| = 2\left| {{m^2} - \dfrac{m}{2} - \dfrac{1}{2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right|\)

Vì \(0 \le m \le 1 \Leftrightarrow  - \dfrac{1}{4} \le m - \dfrac{1}{4} \le \dfrac{3}{4}\) suy ra \({\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{{16}} \Leftrightarrow {\left( {m - \dfrac{1}{4}} \right)^2} - \dfrac{9}{{16}} \le 0\)

Do đó \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right| = 2\left| {\dfrac{9}{{16}} - {{\left( {m - \dfrac{1}{4}} \right)}^2}} \right| = \dfrac{9}{8} - 2{\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{8}\)

Dấu “=” xảy ra khi và chỉ khi \(m = \dfrac{1}{4}\).

Câu 20 Trắc nghiệm

Cho phương trình \({x^2} - \left( {2m + 1} \right)x + {m^2} + 1 = 0\), với \(m\) là tham số. Tìm tất cả các giá trị \(m \in \mathbb{Z}\) để phương trình có hai nghiệm phân biệt \({x_1},{x_2}\) sao cho biểu thức \(P = \dfrac{{{x_1}{x_2}}}{{{x_1} + {x_2}}}\) có giá trị là số nguyên.

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có \(\Delta  = {\left( {2m + 1} \right)^2} - 4\left( {{m^2} + 1} \right) = 4m - 3\). Để phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0 \Leftrightarrow m > \dfrac{3}{4}\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2m + 1\) và \({x_1}{x_2} = {m^2} + 1\). Do đó \(P = \dfrac{{{x_1}{x_2}}}{{{x_1} + {x_2}}} = \dfrac{{{m^2} + 1}}{{2m + 1}} = \dfrac{{2m - 1}}{4} + \dfrac{5}{{4\left( {2m + 1} \right)}}\). Suy ra \(4P = 2m - 1 + \dfrac{5}{{2m + 1}}\). Do \(m > \dfrac{3}{4}\) nên \(2m + 1 > 1\)

Để \(P \in \mathbb{Z}\) thì ta phải có \(\left( {2m + 1} \right)\) là ước của \(5\), suy ra \(2m + 1 = 5 \Leftrightarrow m = 2\)

Thử lại với \(m = 2\), ta được \(P = 1\) (thỏa mãn).

Vậy \(m = 2\) là giá trị cần tìm thỏa mãn bài toán.