Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2{m^2} - 3m + 1 = 0\), với \(m\) là tham số. Gọi \({x_1},{x_2}\) là nghiệm của phương trình. Chọn câu đúng.
Trả lời bởi giáo viên
Ta có \(\Delta ' = {\left( {m - 1} \right)^2} - \left( {2{m^2} - 3m + 1} \right) = - {m^2} + m = m\left( {1 - m} \right)\). Để phương trình có hai nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow 0 \le m \le 1\). Theo định lý Viet ta có: \({x_1} + {x_2} = 2\left( {m - 1} \right)\) và \({x_1}{x_2} = 2{m^2} - 3m + 1\). Ta có \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = \left| {2\left( {m - 1} \right) + 2{m^2} - 3m + 1} \right|\)\( = \left| {2{m^2} - m - 1} \right| = 2\left| {{m^2} - \dfrac{m}{2} - \dfrac{1}{2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right|\)
Vì \(0 \le m \le 1 \Leftrightarrow - \dfrac{1}{4} \le m - \dfrac{1}{4} \le \dfrac{3}{4}\) suy ra \({\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{{16}} \Leftrightarrow {\left( {m - \dfrac{1}{4}} \right)^2} - \dfrac{9}{{16}} \le 0\)
Do đó \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right| = 2\left| {{{\left( {m - \dfrac{1}{4}} \right)}^2} - \dfrac{9}{{16}}} \right| = 2\left| {\dfrac{9}{{16}} - {{\left( {m - \dfrac{1}{4}} \right)}^2}} \right| = \dfrac{9}{8} - 2{\left( {m - \dfrac{1}{4}} \right)^2} \le \dfrac{9}{8}\)
Dấu “=” xảy ra khi và chỉ khi \(m = \dfrac{1}{4}\).
Hướng dẫn giải:
+ Sử dụng hệ thức Vi-et để biến đổi và đánh giá \(\left| {{x_1} + {x_2} + {x_1}{x_2}} \right|.\)