Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = mx + 1\). Gọi \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\) là các giao điểm của \(\left( d \right)\) và \(\left( P \right)\). Tìm \(m\) để biểu thức \(M = \left( {{y_1} - 1} \right)\left( {{y_2} - 1} \right)\) đạt giá trị lớn nhất.
Trả lời bởi giáo viên
Phương trình hoành độ giao điểm của đường thẳng và Parabol là: \({x^2} = mx + 1 \Leftrightarrow {x^2} - mx - 1 = 0\) (1)
\(\Delta = {m^2} + 4 > 0\) với mọi \(m\) nên (1) có hai nghiệm phân biệt, suy ra \(\left( d \right)\) luôn cắt \(\left( P \right)\) tại hai điểm phân biệt \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\) với \({x_1};{x_2}\) là hai nghiệm của phương trình (1).
Theo định lý Viet, ta có: \({x_1} + {x_2} = m;{x_1}{x_2} = - 1\)
Vì \(A;B \in \left( P \right) \Rightarrow {y_1} = x_1^2;{y_2} = x_2^2\).
Ta có
$M = \left( {{y_1} - 1} \right)\left( {{y_2} - 1} \right) $$= \left( {x_1^2 - 1} \right)\left( {x_2^2 - 1} \right)$$ = x_1^2x_2^2 - \left( {x_1^2 + x_1^2} \right) + 1$
$ = x_1^2x_2^2 + 2{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2} + 1$ \( = 1 - 2 - {m^2} + 1 = - {m^2} \le 0\)
Vậy \(\max M = 0\) khi \(m = 0\).
Hướng dẫn giải:
+ Viết phương trình hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\).
+ Đánh giá \(M = \left( {{y_1} - 1} \right)\left( {{y_2} - 1} \right)\) bằng cách sử dụng hệ thức Vi-et.