Cho $P = \dfrac{2}{{\sqrt x + 1}}$.
Có bao nhiêu giá trị $x \in \mathbb{Z}$ để $P \in \mathbb{Z}$ ?
Ta có để $P = \dfrac{2}{{\sqrt x + 1}}$ thì $2 \vdots \left( {\sqrt x + 1} \right)$ $\Leftrightarrow \left( {\sqrt x + 1} \right) \in $Ư$\left( 2 \right) = \left\{ {1; - 1;2; - 2} \right\}$
Mà $\sqrt x + 1 > 0$ với $x \ge 0$ nên $\sqrt x + 1 \in \left\{ {1;2} \right\}$
+) $\sqrt x + 1 = 1 \Leftrightarrow x = 0$ (TM )
+) $\sqrt x + 1 = 2 \Leftrightarrow x = 1$ (TM )
Vậy có hai giá trị của $x$ thỏa mãn điều kiện.
Cho \(A = \dfrac{1}{{\sqrt 3 - 1}} - \sqrt {27} + \dfrac{3}{{\sqrt 3 }};\)\(B = \dfrac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \dfrac{{\sqrt 5 }}{{\sqrt 5 - 1}} - \dfrac{{3\sqrt 5 }}{{3 + \sqrt 5 }}\). Chọn câu đúng.
Ta có: \(A = \dfrac{1}{{\sqrt 3 - 1}} - \sqrt {27} + \dfrac{3}{{\sqrt 3 }} \)\(= \dfrac{{\sqrt 3 + 1}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}} - \sqrt {9.3} + \dfrac{{\sqrt 3 .\sqrt 3 }}{{\sqrt 3 }}\)
\( = \dfrac{{\sqrt 3 + 1}}{2} - 3\sqrt 3 + \sqrt 3 \)\( = \dfrac{{\sqrt 3 + 1 - 4\sqrt 3 }}{2}\)\( = \dfrac{{1 - 3\sqrt 3 }}{2}\)
Và \(B = \dfrac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \dfrac{{\sqrt 5 }}{{\sqrt 5 - 1}} - \dfrac{{3\sqrt 5 }}{{3 + \sqrt 5 }} \)\(= \dfrac{{\left( {5 + \sqrt 5 } \right)\left( {\sqrt 5 - 2} \right)}}{{\left( {\sqrt 5 + 2} \right)\left( {\sqrt 5 - 2} \right)}} + \dfrac{{\sqrt 5 \left( {\sqrt 5 + 1} \right)}}{{\left( {\sqrt 5 - 1} \right)\left( {\sqrt 5 + 1} \right)}} - \dfrac{{3\sqrt 5 \left( {3 - \sqrt 5 } \right)}}{{\left( {3 + \sqrt 5 } \right)\left( {3 - \sqrt 5 } \right)}}\)
\( = \dfrac{{3\sqrt 5 - 5}}{1} + \dfrac{{5 + \sqrt 5 }}{4} - \dfrac{{9\sqrt 5 - 15}}{4} \)\(= \dfrac{{12\sqrt 5 - 20 + 5 + \sqrt 5 - 9\sqrt 5 + 15}}{4} = \sqrt 5 \)
Ta thấy \(A = \dfrac{{1 - 3\sqrt 3 }}{2} < 0\,\left( {do\,1 - 3\sqrt 3 < 0} \right)\) và \(B = \sqrt 5 > 0\) nên \(A < 0 < B\).
Cho \(A = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.
Ta có: \(A = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}} = \dfrac{{\left( {2\sqrt x + 4} \right) - 5}}{{\sqrt x + 2}} = \dfrac{{2\left( {\sqrt x + 2} \right)}}{{\sqrt x + 2}} - \dfrac{5}{{\sqrt x + 2}} = 2 - \dfrac{5}{{\sqrt x + 2}}\)
Ta có: \(x \ge 0 \Rightarrow \sqrt x \ge 0 \Leftrightarrow \sqrt x + 2 \ge 2 > 0 \Rightarrow \dfrac{5}{{\sqrt x + 2}} > 0\) suy ra \(2 - \dfrac{5}{{\sqrt x + 2}} < 2\) hay \(A < 2\) (1)
Lại có: \(\sqrt x + 2 \ge 2 \Rightarrow \dfrac{5}{{\sqrt x + 2}} \le \dfrac{5}{2}\) suy ra \(2 - \dfrac{5}{{\sqrt x + 2}} \ge 2 - \dfrac{5}{2} \Leftrightarrow A \ge - \dfrac{1}{2}\) (2)
Từ (1) và (2) ta có: \( - \dfrac{1}{2} \le A < 2\) mà \(A \in \mathbb{Z} \Rightarrow A \in \left\{ {0;1} \right\}\)
+ Với \(A = 0 \Leftrightarrow \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}} = 0 \Rightarrow 2\sqrt x - 1 = 0 \Leftrightarrow \sqrt x = \dfrac{1}{2} \Leftrightarrow x = \dfrac{1}{4}\left( {tm} \right)\)
+ Với \(A = 1 \Leftrightarrow \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}} = 1 \Rightarrow 2\sqrt x - 1 = \sqrt x + 2 \Leftrightarrow \sqrt x = 3 \Leftrightarrow x = 9\left( {tm} \right)\)
Vậy với \(x = \dfrac{1}{4};x = 9\) thì \(A\) đạt giá trị nguyên. Hay có 2 giá trị của \(x\) thỏa mãn đề bài.
Cho biểu thức $A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$ với $x \ge 0;x \ne 4$
Rút gọn biểu thức $A$ ta được
Ta có $A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$$ = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \dfrac{{2 + 5\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}$
$ = \dfrac{{x + 3\sqrt x + 2 + 2x - 4\sqrt x - 2 - 5\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}$$ = \dfrac{{3x - 6\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}$$ = \dfrac{{3\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \dfrac{{3\sqrt x }}{{\sqrt x + 2}}$
Vậy $A = \dfrac{{3\sqrt x }}{{\sqrt x + 2}}$ với $x \ge 0;x \ne 4$
Cho biểu thức $A = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 - x}}$ với $x \ge 0;x \ne 4$
Tìm $x$ để $A = 2$.
Với $x \ge 0;x \ne 4$ ta có $A = \dfrac{{3\sqrt x }}{{\sqrt x + 2}}$
Xét $A = 2$$ \Leftrightarrow \dfrac{{3\sqrt x }}{{\sqrt x + 2}} = 2 \Rightarrow 3\sqrt x = 2\left( {\sqrt x + 2} \right) \Leftrightarrow \sqrt x = 4 $
$\Leftrightarrow x = 16\,\,\left( {TM} \right)$
Vậy $x = 16$.
Cho biểu thức
$B = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$
Rút gọn biểu thức $B$ ta được
Ta có $B = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$$ = \left( {\dfrac{{\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \dfrac{{\sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2}}}} \right).\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}$
$ = \left( {\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}} \right).\dfrac{{{{\left( {\sqrt x - 1} \right)}^2}{{\left( {\sqrt x + 1} \right)}^2}}}{2}$
$ = \dfrac{{x - \sqrt x - 2 - x - \sqrt x + 2}}{{\left( {\sqrt x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}.\dfrac{{{{\left( {\sqrt x - 1} \right)}^2}.{{\left( {\sqrt x + 1} \right)}^2}}}{2}$$ = \dfrac{{ - 2\sqrt x \left( {\sqrt x - 1} \right)}}{2} = \sqrt x - x$
Vậy $B = \sqrt x - x$.
Cho biểu thức
$B = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$
Tìm $x$ để $B > 0$
Theo câu trước ta có $B = \sqrt x - x$.
Xét $B > 0$$ \Leftrightarrow \sqrt x - x > 0 \Leftrightarrow \sqrt x \left( {1 - \sqrt x } \right) > 0$
Với $x \ge 0$, $x \ne 1$ ta có $\sqrt x \ge 0$ nên $\sqrt x \left( {1 - \sqrt x } \right) > 0 \Rightarrow \left\{ \begin{array}{l}1 - \sqrt x > 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sqrt x < 1\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 1\\x \ne 0\end{array} \right.$
Kết hợp điều kiện ta có $0 < x < 1$.
Cho biểu thức
$B = \left( {\dfrac{{\sqrt x - 2}}{{x - 1}} - \dfrac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}$ với $x \ge 0;x \ne 1$
Tìm giá trị lớn nhất của $B$
Ta có $B = \sqrt x - x$ với $x \ge 0;x \ne 1$
Khi đó $B = \sqrt x - x = - \left( {x - \sqrt x } \right) = \dfrac{1}{4} - \left( {x - \sqrt x + \dfrac{1}{4}} \right) = \dfrac{1}{4} - {\left( {\sqrt x - \dfrac{1}{2}} \right)^2}$
Nhận thây $\dfrac{1}{4} - {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} \le \dfrac{1}{4}$ với $x \ge 0;x \ne 1$
Dấu “=” xảy ra khi $\sqrt x - \dfrac{1}{2} = 0 \Leftrightarrow \sqrt x = \dfrac{1}{2} \Leftrightarrow x = \dfrac{1}{4}\,\,\left( {TM} \right)$
Vậy giá trị lớn nhất của $B$ là $\dfrac{1}{4}$ khi và chỉ khi $x = \dfrac{1}{4}$.
Cho biểu thức $C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$
với $x \ge 0;x \ne 4;x \ne 9$.
Rút gọn biểu thức $C$ ta được
Ta có $x - 5\sqrt x + 6 = x - 2\sqrt x - 3\sqrt x + 6 = \sqrt x \left( {\sqrt x - 2} \right) - 3\left( {\sqrt x - 2} \right) = \left( {\sqrt x - 3} \right)\left( {\sqrt x - 2} \right)$ nên
$C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$$ = \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}$
$ = \dfrac{{2\sqrt x - 9 - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}$$ = \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}$
$ = \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{x - 2\sqrt x + \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x \left( {\sqrt x - 2} \right) + \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$
Vậy $C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$với $x \ge 0;x \ne 4;x \ne 9$
Cho biểu thức $C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$
với $x \ge 0;x \ne 4;x \ne 9$.
Tìm $x$ để $C < 1$
Theo câu trước ta có $C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$ với $x \ge 0;x \ne 4;x \ne 9$
Để $C < 1$$ \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} < 1 \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - \dfrac{{\sqrt x - 3}}{{\sqrt x - 3}} < 0 \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} < 0$
Mà $4 > 0$ nên $\sqrt x - 3 < 0 \Leftrightarrow \sqrt x < 3 \Rightarrow x < 9$
Kết hợp điều kiện $x \ge 0;x \ne 4;x \ne 9$ suy ra $0 \le x < 9;x \ne 4$.
Cho biểu thức \(P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x + 1}}} \right)\)
Rút gọn P.
ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\x \ne 1\end{array} \right.\)
\(\begin{array}{l}P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x + 1}}} \right)\\ = \left( {\dfrac{{2x + 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {\dfrac{{x + \sqrt x + 1 - x - 4}}{{x + \sqrt x + 1}}} \right)\\ = \dfrac{{2x + 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}:\dfrac{{\sqrt x - 3}}{{x + \sqrt x + 1}}\\ = \dfrac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{x + \sqrt x + 1}}{{\sqrt x - 3}}\,\,\,\,\left( {x \ne 9} \right)\\ = \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}} = \dfrac{{\sqrt x }}{{\sqrt x - 3}}.\end{array}\)
Vậy \(P = \dfrac{{\sqrt x }}{{\sqrt x - 3}}\) với \(x \ge 0;x \ne 1;x \ne 9\)
Cho biểu thức \(P = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \dfrac{1}{{\sqrt x - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x + 1}}} \right)\)
Tìm các giá trị nguyên của x để P nhận giá trị nguyên dương.
ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\x \ne 1\\x \ne 9\end{array} \right.\)
Ta có: \(P = \dfrac{{\sqrt x }}{{\sqrt x - 3}} = \dfrac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} = 1 + \dfrac{3}{{\sqrt x - 3}}.\)
Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\1 + \dfrac{3}{{\sqrt x - 3}} > 0\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{3}{{\sqrt x - 3}} \in Z\\\dfrac{3}{{\sqrt x - 3}} > - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{3}{{\sqrt x - 3}} \in Z\\\dfrac{{3 + \sqrt x - 3}}{{\sqrt x - 3}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {\sqrt x - 3} \right) \in U\left( 3 \right)(1)\\\dfrac{{\sqrt x }}{{\sqrt x - 3}} > 0(2)\end{array} \right.\\(1) \Leftrightarrow \left( {\sqrt x - 3} \right) \in \left\{ {1;\,\,3} \right\}\\ \Leftrightarrow \left[ \begin{array}{l}\sqrt x - 3 = 1\\\sqrt x - 3 = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sqrt x = 4\\\sqrt x = 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 16\,\,\left( {tm} \right)\\x = 36\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy x = 16 hoặc x = 36 thì P nguyên dương.
Tính giá trị của \(A =\dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \dfrac{1}{{2018\sqrt {2017} + 2017\sqrt {2018} }}\)
Ta có: \(k\sqrt {k - 1} + \left( {k - 1} \right)\sqrt k \, = \sqrt {k\left( {k - 1} \right)} \left( {\sqrt k + \sqrt {k - 1} } \right)\) với \(k \ge 1\).
\(\begin{array}{l} \Rightarrow \dfrac{1}{{k\sqrt {k - 1} + \left( {k - 1} \right)\sqrt k }} \\= \dfrac{1}{{\sqrt {k\left( {k - 1} \right)} \left( {\sqrt k + \sqrt {k - 1} } \right)}} \\= \dfrac{{\left( {\sqrt k - \sqrt {k - 1} } \right)}}{{\sqrt {k\left( {k - 1} \right)} \left( {\sqrt k + \sqrt {k - 1} } \right)\left( {\sqrt k - \sqrt {k - 1} } \right)}}\\ = \dfrac{{\sqrt k - \sqrt {k - 1} }}{{\sqrt {k\left( {k - 1} \right)} }} \\= \dfrac{{\sqrt k - \sqrt {k - 1} }}{{\sqrt k .\sqrt {k - 1} }} \\= \dfrac{1}{{\sqrt {k - 1} }} - \dfrac{1}{{\sqrt k }}\end{array}\)
Thay lại vào A ta được:
\(A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }}\)\( + ... + \dfrac{1}{{2018\sqrt {2017} + 2017\sqrt {2018} }}\)\(= \,\left( {\dfrac{1}{{\sqrt 1 }} - \dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 3 }}} \right) \)\(+ ..... + \left( {\dfrac{1}{{\sqrt {2017} }} - \dfrac{1}{{\sqrt {2018} }}} \right)\)\(= 1 - \dfrac{1}{{\sqrt {2018} }}\)
Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}\left( {a > 0;a \ne 4} \right)\)
\(\begin{array}{l}T = \dfrac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}\,\,\,\,\left( {a > 0;a \ne 4} \right)\\ = \dfrac{{\sqrt 2 \left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 1} \right)}}\\ = \sqrt 2 \left( {\sqrt a - 1} \right)\end{array}\)
Vậy \(T = \sqrt 2 \left( {\sqrt a - 1} \right)\).
Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).
Tính giá trị của biểu thức \(A\) khi \(x = 16\).
Điều kiện: \(x \ge 0,\,\,x \ne 9.\)
Thay \(x = 16\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta có:
\(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} = \dfrac{{\sqrt {16} }}{{\sqrt {16} + 3}} = \dfrac{4}{{4 + 3}} = \dfrac{4}{7}\).
Vậy khi \(x = 16\) thì \(A = \dfrac{4}{7}\).
Cho hai biểu thức \(A = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\) và \(B = \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\) với \(x \ge 0,\,\,x \ne 9\).
Rút gọn \(A + B\) ta được:
Điều kiện: \(x \ge 0,\,\,x \ne 9.\)
\(\begin{array}{l}A + B = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{x - 9}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{{2\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{\sqrt x \left( {\sqrt x - 3} \right) + 2\sqrt x \left( {\sqrt x + 3} \right) - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{x - 3\sqrt x + 2x + 6\sqrt x - 3x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\sqrt x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{{3\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \dfrac{3}{{\sqrt x + 3}}\end{array}\)
Vậy \(A + B = \dfrac{3}{{\sqrt x + 3}}\) (với \(x \ge 0,\,\,x \ne 9\)).
Cho biểu thức \(B = \left( {\dfrac{{\sqrt x }}{{2 + \sqrt x }} + \dfrac{{x + 4}}{{4 - x}}} \right):\dfrac{x}{{x - 2\sqrt x }}\) với \(x > 0\) và \(x \ne 4\).
Rút gọn biểu thức trên ta được kết quả
Với \(x > 0,\,\,x \ne 4\) ta có:
\(\begin{array}{l}B = \left( {\dfrac{{\sqrt x }}{{2 + \sqrt x }} + \dfrac{{x + 4}}{{4 - x}}} \right):\dfrac{x}{{x - 2\sqrt x }}\\B = \left( {\dfrac{{\sqrt x }}{{2 + \sqrt x }} + \dfrac{{x + 4}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}} \right):\dfrac{x}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\B = \dfrac{{\sqrt x \left( {2 - \sqrt x } \right) + x + 4}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}:\dfrac{{\sqrt x }}{{\sqrt x - 2}}\\B = \dfrac{{2\sqrt x - x + x + 4}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}.\dfrac{{\sqrt x - 2}}{{\sqrt x }}\\B = - \dfrac{{2\sqrt x + 4}}{{2 + \sqrt x }}.\dfrac{1}{{\sqrt x }}\\B = - \dfrac{{2\left( {\sqrt x + 2} \right)}}{{2 + \sqrt x }}.\dfrac{1}{{\sqrt x }}\\B = - \dfrac{2}{{\sqrt x }}\end{array}\)
Vậy với \(x > 0,\,\,x \ne 4\) thì \(B = - \dfrac{2}{{\sqrt x }}\).
Rút gọn biểu thức \(P = \dfrac{{2\sqrt a }}{{\sqrt a + 3}} + \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}} + \dfrac{{3 + 7\sqrt a }}{{9 - a}}\) với \(a \ge 0,\,\,a \ne 9\).
Với \(a \ge 0,\,\,a \ne 9\) ta có:
\(\begin{array}{l}P = \dfrac{{2\sqrt a }}{{\sqrt a + 3}} + \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}} + \dfrac{{3 + 7\sqrt a }}{{9 - a}}\\P = \dfrac{{2\sqrt a }}{{\sqrt a + 3}} + \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}} - \dfrac{{3 + 7\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\\P = \dfrac{{2\sqrt a \left( {\sqrt a - 3} \right) + \left( {\sqrt a + 1} \right)\left( {\sqrt a + 3} \right) - \left( {3 + 7\sqrt a } \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\end{array}\)
\(\begin{array}{l}P = \dfrac{{2a - 6\sqrt a + a + 3\sqrt a + \sqrt a + 3 - 3 - 7\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\\P = \dfrac{{3a - 9\sqrt a }}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\\P = \dfrac{{3\sqrt a \left( {\sqrt a - 3} \right)}}{{\left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right)}}\\P = \dfrac{{3\sqrt a }}{{\sqrt a + 3}}\end{array}\)
Vậy với \(a \ge 0,\,\,a \ne 9\) thì \(P = \dfrac{{3\sqrt a }}{{\sqrt a + 3}}\).
Cho biểu thức \(P = \dfrac{1}{{\sqrt x - 2}} - \dfrac{2}{{\sqrt x + 1}} + \dfrac{{2\sqrt x - 7}}{{x - \sqrt x - 2}}\) với \(x \ge 0,\,\,x \ne 4.\)
Rút gọn P ta được:
Điều kiện: \(x \ge 0,\,\,x \ne 4.\)
\(\begin{array}{l}P = \dfrac{1}{{\sqrt x - 2}} - \dfrac{2}{{\sqrt x + 1}} + \dfrac{{2\sqrt x - 7}}{{x - \sqrt x - 2}}\\\,\,\,\,\, = \dfrac{1}{{\sqrt x - 2}} - \dfrac{2}{{\sqrt x + 1}} + \dfrac{{2\sqrt x - 7}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\\\,\,\,\, = \dfrac{{\sqrt x + 1 - 2\left( {\sqrt x - 2} \right) + 2\sqrt x - 7}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\\\,\,\,\, = \dfrac{{\sqrt x + 1 - 2\sqrt x + 4 + 2\sqrt x - 7}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\\\,\,\, = \dfrac{{\sqrt x - 2}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}\\\,\,\, = \dfrac{1}{{\sqrt x + 1}}.\end{array}\)
Vậy với \(x \ge 0,\,\,x \ne 4\) thì \(P = \dfrac{1}{{\sqrt x + 1}}.\)
Cho biểu thức \(P = \dfrac{1}{{\sqrt x - 2}} - \dfrac{2}{{\sqrt x + 1}} + \dfrac{{2\sqrt x - 7}}{{x - \sqrt x - 2}}\) với \(x \ge 0,\,\,x \ne 4.\)
Tính giá trị của biểu thức \(P\) khi \(x = 3 - 2\sqrt 2 .\)
Điều kiện: \(x \ge 0,\,\,x \ne 4.\)
Ta có: \(x = 3 - 2\sqrt 2 = {\left( {\sqrt 2 - 1} \right)^2}\) thỏa mãn điều kiện.
\( \Rightarrow \sqrt x = \sqrt {3 - 2\sqrt 2 } = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} \) \( = \left| {\sqrt 2 - 1} \right| = \sqrt 2 - 1\) \(\left( {do\,\,\,\sqrt 2 - 1 > 0} \right)\)
Thay \(\sqrt x = \sqrt 2 - 1\) vào biểu thức \(P\) ta được: \(P = \dfrac{1}{{\sqrt x + 1}} = \dfrac{1}{{\sqrt 2 - 1 + 1}} = \dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}.\)
Vậy với \(x = 3 - 2\sqrt 2 \) thì \(P = \dfrac{{\sqrt 2 }}{2}.\)