Cho hàm số \(f\left( x \right) = {x^2} - x\), đạo hàm của hàm số ứng với số gia \(\Delta x\) của đối số \(x\) tại \({x_0}\) là:
Ta có: \(\Delta y = {\left( {{x_0} + \Delta x} \right)^2} - \left( {{x_0} + \Delta x} \right) - \left( {x_0^2 - {x_0}} \right) = {\left( {\Delta x} \right)^2} + 2{x_0}.\Delta x - \Delta x\)
\( \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 2{x_0} - 1} \right)\).
Tìm \(a\) để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}} & khi\,x \ne 1\\a & khi\,x = 1\end{array} \right.\) có đạo hàm tại điểm \(x = 1\).
Để hàm số có đạo hàm tại \(x = 1\) thì trước hết \(f\left( x \right)\) phải liên tục tại \(x = 1\)
$ \Leftrightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - 1}}{{x - 1}} = 2 = f\left( 1 \right) = a$.
Khi đó $f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1$.
Vậy \(a = 2\).
Tìm \(a,b\) để hàm số $f(x) = \left\{ \begin{array}{l}a{x^2} + bx + 1\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x \ge 0\\a{\mathop{\rm s}\nolimits} {\rm{in }}x + b\cos x\,\,\,\,\,khi\,\,\,x < 0\end{array} \right.$ có đạo hàm tại điểm \({x_0} = 0\)
Ta có: \(f(0) = 1\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} (a{x^2} + bx + 1) = 1\\\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} (a{\mathop{\rm s}\nolimits} {\rm{in }}x + b\cos x) = b\end{array}\)
Để hàm số liên tục thì \(b = 1\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{a{x^2} + x + 1 - 1}}{x} = 1\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{a\sin x + b\cos x - 1}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{2a\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2}}}{x}\\ = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}.\mathop {\lim }\limits_{x \to {0^ - }} \left( {a\cos \dfrac{x}{2}} \right) - \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}.\mathop {\lim }\limits_{x \to {0^ - }} \sin \dfrac{x}{2} = a\end{array}\)
Để tồn tại \(f'\left( 0 \right)\) thì \(\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f(x) - f(0)}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f(x) - f(0)}}{x} \Leftrightarrow a = 1\)
Cho hàm số \(f(x)\) xác định trên \({\mathbb{R}^ + }\) bởi \(f(x) = \left\{ \begin{array}{l}\dfrac{{\sqrt x }}{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right..\) Xét hai mệnh đề sau:
\((I)\) \(f'(0) = 1\) .
\((II)\) Hàm số không có đạo hàm tại \({x_0} = 0\).
Mệnh đề nào đúng?
Ta có: $\mathop {\lim }\limits_{x \to 0^+} \dfrac{{\dfrac{{\sqrt x }}{x} - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0^+} \dfrac{1}{{x\sqrt x }} = + \infty $
Không tồn tại $\mathop {\lim }\limits_{x \to 0^-} \dfrac{{\dfrac{{\sqrt x }}{x} - 0}}{{x - 0}}$ nên không tồn tại $\mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\sqrt x }}{x} - 0}}{{x - 0}}$.
Do đó hàm số không có đạo hàm tại x=0.
Vậy (I) sai, (II) đúng
Tính đạo hàm của hàm số sau: \(y = {x^4} - 3{x^2} + 2x - 1\)
\(\begin{array}{l}y = {x^4} - 3{x^2} + 2x - 1\\ \Rightarrow y' = 4{x^3} - 3.2x + 2 = 4{x^3} - 6x + 2\end{array}\)
Đạo hàm của hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\) là:
\(\begin{array}{l}y' = \dfrac{{\left( {ax + b} \right)'\left( {cx + d} \right) - \left( {ax + b} \right)\left( {cx + d} \right)'}}{{{{\left( {cx + d} \right)}^2}}} = \dfrac{{a\left( {cx + d} \right) - c\left( {ax + b} \right)}}{{{{\left( {cx + d} \right)}^2}}}\\ = \dfrac{{acx + ad - acx - bc}}{{{{\left( {cx + d} \right)}^2}}} = \dfrac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\end{array}\)
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\). Đạo hàm của hàm số $f\left( x \right)$ mang dấu âm khi và chỉ khi
Có: \(f'\left( x \right) = 3{x^2} - 3.2x = 3{x^2} - 6x\)
\(f'\left( x \right) < 0 \Leftrightarrow 3{x^2} - 6x < 0 \Leftrightarrow 0 < x < 2\).
Cho hàm số \(f\left( x \right) = \tan \left( {x - \dfrac{{2\pi }}{3}} \right)\). Giá trị \(f'\left( 0 \right)\) bằng:
Ta có: \(f\left( x \right) = \tan \left( {x - \dfrac{{2\pi }}{3}} \right)\) \( \Rightarrow f'\left( x \right) = \dfrac{{\left( {x - \dfrac{{2\pi }}{3}} \right)'}}{{{{\cos }^2}\left( {x - \dfrac{{2\pi }}{3}} \right)}} = \dfrac{1}{{{{\cos }^2}\left( {x - \dfrac{{2\pi }}{3}} \right)}}\)
Với \(x = 0\) thì \(f'\left( 0 \right) = \dfrac{1}{{{{\cos }^2}\left( { - \dfrac{{2\pi }}{3}} \right)}} = \dfrac{1}{{{{\left( {\dfrac{1}{2}} \right)}^2}}} = 4\)
Tính đạo hàm của hàm số sau: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x + 1\,\,\,\,khi\,\,x > 1\\2x + 2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \le 1\end{array} \right.\) ta được:
Với \(x > 1\) ta có: \(f\left( x \right) = {x^2} - 3x + 1 \Rightarrow f'\left( x \right) = 2x - 3\)
Với \(x < 1\) ta có : \(f\left( x \right) = 2x + 2 \Leftrightarrow f'\left( x \right) = 2\)
Với $x = 1$ ta có : \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} - 3x + 1} \right) = - 1 \ne f\left( 1 \right) = 4 \)
\(\Rightarrow \) Hàm số không liên tục tại $x = 1,$ do đó không có đạo hàm tại $x = 1.$
Vậy \(f'\left( x \right) = \left\{ \begin{array}{l}2x - 3\,\,\,khi\,\,x > 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\)
Hàm số \(y = {\left( {{x^2} + 1} \right)^3}\) có đạo hàm cấp ba là:
Cách 1:
\(\begin{array}{l}y' = 3{\left( {{x^2} + 1} \right)^2}\left( {{x^2} + 1} \right)' = 6x{\left( {{x^2} + 1} \right)^2}\\y'' = 6{\left( {{x^2} + 1} \right)^2} + 6x.2\left( {{x^2} + 1} \right).2x\\\,\,\,\,\,\, = 6{\left( {{x^2} + 1} \right)^2} + 24{x^2}\left( {{x^2} + 1} \right)\\y''' = 12\left( {{x^2} + 1} \right).2x + 24.2x.\left( {{x^2} + 1} \right) + 24{x^2}.2x\\\,\,\,\,\,\,\, = 24x\left( {{x^2} + 1} \right) + 48x\left( {{x^2} + 1} \right) + 48{x^3}\\\,\,\,\,\,\, = 24x\left( {{x^2} + 1 + 2\left( {{x^2} + 1} \right) + 2{x^2}} \right) = 24x\left( {5{x^2} + 3} \right)\end{array}\)
Cách 2:
\(\begin{array}{l}y = {\left( {{x^2} + 1} \right)^3} = {x^6} + 3{x^4} + 3{x^2} + 1\\y' = 6{x^5} + 12{x^3} + 6x\\y'' = 30{x^4} + 36{x^2} + 6\\y''' = 120{x^3} + 72x = 24x\left( {5{x^2} + 3} \right)\end{array}\)
Xét \(y = f\left( x \right) = \cos \left( {2x - \dfrac{\pi }{3}} \right)\). Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\dfrac{\pi }{2}} \right]\) là:
$\begin{array}{l}f'\left( x \right) = - 2\sin \left( {2x - \dfrac{\pi }{3}} \right)\\f''\left( x \right) = - 4\cos \left( {2x - \dfrac{\pi }{3}} \right)\\f'''\left( x \right) = 8\sin \left( {2x - \dfrac{\pi }{3}} \right)\\{f^{\left( 4 \right)}}\left( x \right) = 16\cos \left( {2x - \dfrac{\pi }{3}} \right)\\{f^{\left( 4 \right)}}\left( x \right) = - 8 \Leftrightarrow \cos \left( {2x - \dfrac{\pi }{3}} \right) = - \dfrac{1}{2}\\ \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{\pi }{3} = \dfrac{{2\pi }}{3} + k2\pi \\2x - \dfrac{\pi }{3} = - \dfrac{{2\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = - \dfrac{\pi }{6} + k\pi \end{array} \right.\,\,\left( {k \in Z} \right)\\x \in \left[ {0;\dfrac{\pi }{2}} \right] \Rightarrow x = \dfrac{\pi }{2}\end{array}$
Hàm số \(y = x\sqrt {{x^2} + 1} \) có đạo hàm cấp hai bằng:
\(\begin{array}{l}y' = \sqrt {{x^2} + 1} + x.\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }} = \dfrac{{{x^2} + 1 + {x^2}}}{{\sqrt {{x^2} + 1} }} = \dfrac{{2{x^2} + 1}}{{\sqrt {{x^2} + 1} }}\\y'' = \dfrac{{4x\sqrt {{x^2} + 1} - \left( {2{x^2} + 1} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \dfrac{{\dfrac{{4x\left( {{x^2} + 1} \right) - x\left( {2{x^2} + 1} \right)}}{{\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \dfrac{{4{x^3} + 4x - 2{x^3} - x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }} = \dfrac{{2{x^3} + 3x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}\end{array}\)
Cho hàm số \(y = \cos x\). Khi đó \({y^{\left( {2018} \right)}}\left( x \right)\) bằng:
\(\begin{array}{l}y'\left( x \right) = - \sin x\\y''\left( x \right) = - \cos x\\y'''\left( x \right) = \sin x\\{y^{\left( 4 \right)}}\left( x \right) = \cos x = y\\{y^{\left( 5 \right)}}\left( x \right) = - \sin x = y'\\{y^{\left( 6 \right)}}\left( x \right) = - \cos x = y''\\{y^{\left( 7 \right)}}\left( x \right) = \sin x = y'''\\....\end{array}\)
Ta có: \(2018 = 504.4 + 2 \Rightarrow {y^{\left( {2018} \right)}}\left( x \right) = y''\left( x \right) = - \cos x\)
Cho hàm số \(y = \sqrt {2x - {x^2}} \). Mệnh đề nào sau đây là đúng ?
Ta có :
$\begin{array}{l}y' = \dfrac{{\left( {2x - {x^2}} \right)'}}{{2\sqrt {2x - {x^2}} }} = \dfrac{{2 - 2x}}{{2\sqrt {2x - {x^2}} }} = \dfrac{{1 - x}}{{\sqrt {2x - {x^2}} }}\\y'' = \dfrac{{ - \sqrt {2x - {x^2}} - \left( {1 - x} \right).\dfrac{{1 - x}}{{\sqrt {2x - {x^2}} }}}}{{2x - {x^2}}} = \dfrac{{ - \left( {2x - {x^2}} \right) - {{\left( {1 - x} \right)}^2}}}{{\sqrt {2x - {x^2}} \left( {2x - {x^2}} \right)}} = \dfrac{{ - 2x + {x^2} - 1 + 2x - {x^2}}}{{\sqrt {2x - {x^2}} \left( {2x - {x^2}} \right)}} = \dfrac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }}\end{array}$
Thay vào \({y^3}.y'' + 1 = 0 = {\left( {\sqrt {2x - {x^2}} } \right)^3}.\dfrac{{ - 1}}{{\sqrt {{{\left( {2x - {x^2}} \right)}^3}} }} + 1 = - 1 + 1 = 0\)
Đạo hàm cấp $4$ của hàm số \(y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}}\) là :
\(\begin{array}{l}y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}} = \dfrac{{2x + 1}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{7}{{x - 3}} - \dfrac{5}{{x - 2}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}}\end{array}\)
Xét hàm số \(\dfrac{1}{{ax + b}},\,a \ne 0\) ta có :
\(\begin{array}{l}y' = \dfrac{{ - a}}{{{{\left( {ax + b} \right)}^2}}}\\y'' = \dfrac{{a.2\left( {ax + b} \right).a}}{{{{\left( {ax + b} \right)}^4}}} = \dfrac{{2{a^2}}}{{{{\left( {ax + b} \right)}^3}}}\\y''' = \dfrac{{ - 2{a^2}.3{{\left( {ax + b} \right)}^2}.a}}{{{{\left( {ax + b} \right)}^6}}} = \dfrac{{ - 2.3.{a^3}}}{{{{\left( {ax + b} \right)}^4}}}\\....\\{y^{\left( n \right)}} = \dfrac{{{{\left( { - 1} \right)}^n}.{a^n}.n!}}{{{{\left( {ax + b} \right)}^{n + 1}}}}\\ \Rightarrow {\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 3} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\\,\,\,\,\,{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 2} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}} - \dfrac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}}\end{array}\)
Tiếp tuyến của đường cong \(\left( C \right):\,\,y = x\sqrt x \) tại điểm \(M\left( {1;1} \right)\) có phương trình là:
\(y = x\sqrt x = {x^{\dfrac{3}{2}}} \Rightarrow y' = \dfrac{3}{2}{x^{\dfrac{1}{2}}} = \dfrac{3}{2}\sqrt x \Rightarrow y'\left( 1 \right) = \dfrac{3}{2}\)
\( \Rightarrow \) Phương trình tiếp tuyến của đường cong tại \(M\left( {1;1} \right)\) là: \(y = \dfrac{3}{2}\left( {x - 1} \right) + 1 = \dfrac{3}{2}x - \dfrac{1}{2}\)
Cho hàm số \(y = - {x^3} + 3x - 2\) có đồ thị \(\left( C \right)\). Tiếp tuyến của đồ thị \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục hoành có phương trình:
Xét phương trình hoành độ giao điểm $ - {x^3} + 3x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2 \Rightarrow M\left( { - 2;0} \right)\\x = 1 \Rightarrow N\left( {1;0} \right)\end{array} \right.$
\(y' = - 3{x^2} + 3\)
\(y'\left( { - 2} \right) = - 9 \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\left( { - 2;0} \right)\) là: \(y = - 9\left( {x + 2} \right) + 0 = - 9x - 18\)
\(y'\left( 1 \right) = 0 \Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(N\left( {1;0} \right)\) là \(y = 0\left( {x - 1} \right) + 0 = 0\)
Đạo hàm của hàm số \(y = - \dfrac{{\cos x}}{{3{{\sin }^3}x}} + \dfrac{4}{3}\cot x\) là biểu thức nào sau đây?
\(\begin{array}{l}y = - \dfrac{{\cos x}}{{3{{\sin }^3}x}} + \dfrac{4}{3}\cot x\\y = - \dfrac{1}{3}\dfrac{{\cos x}}{{\sin x.{{\sin }^2}x}} + \dfrac{4}{3}\cot x\\y = - \dfrac{1}{3}\cot x\left( {1 + {{\cot }^2}x} \right) + \dfrac{4}{3}\cot x\\y = - \dfrac{1}{3}{\cot ^3}x + \cot x\\ \Rightarrow y' = - \dfrac{1}{3}.3{\cot ^2}x\left( {\cot x} \right)' + \left( {\cot x} \right)'\\y' = {\cot ^2}x.\dfrac{1}{{{{\sin }^2}x}} - \dfrac{1}{{{{\sin }^2}x}}\\y' = {\cot ^2}x\left( {1 + {{\cot }^2}x} \right) - \left( {1 + {{\cot }^2}x} \right)\\y' = {\cot ^4}x - 1\end{array}\)
Cho hàm số \(y = {x^3} - 6{x^2} + 9x\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) song song với \(d:\,y = 9x\) có phương trình là:
\(y' = 3{x^2} - 12x + 9\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\) là \(y = \left( {3x_0^2 - 12{x_0} + 9} \right)\left( {x - {x_0}} \right) + x_0^3 - 6x_0^2 + 9{x_0}\,\,\left( d \right)\)
\(d//\left( {y = 9x} \right) \Leftrightarrow y'\left( {{x_0}} \right) = 9 \Rightarrow 3x_0^2 - 12{x_0} + 9 = 9 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 4\end{array} \right.\)
Với \({x_0} = 4 \Rightarrow \left( d \right):\,y = 9\left( {x - 4} \right) + 4 = 9x - 32\)
Với \({x_0} = 0 \Rightarrow \left( d \right):\,\,y = 9\left( {x - 0} \right) + 0 = 9x\,\,\left( {ktm} \right)\)
Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:
\(y' = 3{x^2} - 3\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\left( {{x_0};{y_0}} \right)\) là: \(y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\)
$\begin{array}{l}A \in d \Rightarrow - 6 = \left( {3x_0^2 - 3} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\\ \Leftrightarrow - 6 = 3x_0^2 - 3x_0^3 - 3 + 3{x_0} + x_0^3 - 3{x_0} + 1\\ \Leftrightarrow - 2x_0^3 + 3x_0^2 + 4 = 0 \Leftrightarrow {x_0} = 2\end{array}$
Vậy số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là $1.$