Đại cương về đường thẳng và mặt phẳng

  •   
Câu 1 Trắc nghiệm

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

 A sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

 B sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ta chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

 D sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm mặt phẳng không đồng phẳng thì sẽ tạo không tạo được mặt phẳng nào đi qua cả 4 điểm.

Câu 2 Trắc nghiệm

Trong các khẳng định sau, khẳng định nào đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

A sai. Qua 2 điểm phân biệt, tạo được 1 đường thẳng, khi đó chưa đủ điều kiện để lập một mặt phẳng xác định. Có vô số mặt phẳng đi qua 2 điểm đã cho.

B sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì chỉ tạo được đường thẳng, khi đó có vô số mặt phẳng đi qua 3 điểm phân biệt thẳng hàng.

D sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm mặt phẳng không đồng phẳng thì sẽ tạo không tạo được mặt phẳng nào đi qua cả 4 điểm.

Câu 3 Trắc nghiệm

Cho tứ giác ABCD. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tứ giác ABCD.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

4 điểm A,B,C,D tạo thành 1 tứ giác, khi đó 4 điểm A,B,C,D đã đồng phẳng và tạo thành 1 mặt phẳng duy nhất là mặt phẳng (ABCD).

Câu 4 Trắc nghiệm

Trong các khẳng định sau, khẳng định nào đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Hai mặt phẳng phân biệt không song song với nhau thì chúng có duy nhất một giao tuyến.

A sai. Nếu (P)(Q) trùng nhau thì 2 mặt phẳng có vô số điểm chung.

Khi đó, chưa đủ điều kiện để kết luận A,B,C thẳng hàng.

B sai. Có vô số đường thẳng đi qua A, khi đó B,C chưa chắc đã thuộc giao tuyến của (P)(Q).

C sai. Hai mặt phẳng (P)(Q) phân biệt giao nhau tại 1 giao tuyến duy nhất, nếu 3 điểm A,B,C là 3 điểm chung của 2 mặt phẳng thì A,B,C cùng thuộc giao tuyến.

Câu 5 Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình thang ABCD(ABCD). Khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

+) S là điểm chung thứ nhất của hai mặt phẳng (SDC)(SAB) nên A sai.

+) Giao tuyến của hai mặt phẳng (SAB)(ABCD)AC nên B sai.

+) S là điểm chung thứ nhất của (SAD)(SBC).

Gọi I là giao điểm của ADBC thì {IAD(SAD)IBC(SBC) I(SAD)(SBC).

Do đó (SAD)(SBC)=SI. Do đó C đúng.

+) (SAB)(SAD)=SA nên D sai.

Câu 6 Trắc nghiệm

Cho tứ diện ABCD. Gọi G là trực tâm của tam giác BCD. Giao tuyến của mặt phẳng (ACD)(GAB)là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

A là điểm chung thứ nhất giữa hai mặt phẳng (ACD)(GAB).

Ta có BGCD=N {NBG(ABG)N(ABG)NCD(ACD)N(ACD)

N  là điểm chung thứ hai giữa hai mặt phẳng (ACD)(GAB).

Vậy (ABG)(ACD)=AN.

G là trực tâm của tam giác ΔBCD nên BGCD tại N hay N là hình chiếu của B lên CD.

Câu 7 Trắc nghiệm

Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E,F là các điểm lần lượt nằm trên các cạnh AB,AC. Khi EFBC cắt nhau tại I, chọn kết luận không đúng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

+) Ta có: (ABC)(DBC)=BC, mà IBC nên (ABC)(DBC)=BI hay A đúng.

+) (ABC)(DEF)=EF nên B đúng.

+) (ABC)(DEF)=EF, mà IEF nên (ABC)(DEF)=EI nên C đúng.

+) Dễ thấy D là điểm chung của (DBC)(DEF), ngoài ra I=BCEF nên (DBC)(DEF)=DI nên D sai.

Câu 8 Trắc nghiệm

Cho tứ diện ABCD, gọi M,N lần lượt là hai điểm thuộc các đoạn thẳng AB,AC. Giao tuyến của hai mặt phẳng (DBN)(DCM)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Dễ thấy D là điểm chung thứ nhất của hai mặt phẳng.

Trong mp(ABC) gọi G=BNCM {GBN(BDN)GCM(DCM) G(DBN)(DCM)

DG=(DBN)(DCM).

Do M,N là các điểm bát kì thuộc hai đoạn thẳng AB,AC nên ta chưa thể kết luận được vị trí của G.

Câu 9 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm ABAD. Giao tuyến của hai mặt phẳng (SMN)(SAC) là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

S là điểm chung thứ nhất giữa hai mặt phẳng (SMN)(SAC).

 Trong mặt phẳng (ABCD), gọi P=MNAC.

{PAC(SAC)P(SAC)PMN(SMN)P(SMN) P là điểm chung thứ hai giữa hai mặt phẳng (SMN)(SAC).

Vậy (SMN)(SAC)=SP.

Gọi O là tâm hình bình hành ta có: APAC=12.APAO=12.AMAB=12.12=14 AP=14ACAP=14AC.

Câu 10 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trung điểm SA,SB, gọi M=ICJD. Khẳng định nào sau đây sai?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Xét đáp án A: Do S(SAD)(SBC)SIJ nên (SAD)(SBC)IJ nên A sai.

Xét đáp án B: (SAB)(IJCD)=IJIJ(SAB)IJ(IJCD) nên B đúng.

Xét đáp án C: (SBC)(ICD)=CJCJ(SBC)CJ(ICD) nên C đúng.

Xét đáp án D: (IAC)(JBD)=MOMO(IAC),MO(JBD) nên D đúng.

Câu 11 Trắc nghiệm

Chọn khẳng định SAI.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Khẳng định sai là đáp án A: Qua ba điểm phân biệt xác định được một và chỉ một mặt phẳng.

Khẳng định đúng phải là: Qua ba điểm phân biệt không thẳng hàng xác định được một và chỉ một mặt phẳng.

Câu 12 Trắc nghiệm

Cho 2 đường thẳng a,b cắt nhau và không đi qua điểm A. Xác định được nhiều nhất bao nhiêu mặt phẳng bởi a,bA?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

3 mặt phẳng gồm (a,b),(A,a),(A,b).

Câu 13 Trắc nghiệm

Trong các mệnh đề sau mệnh đề nào sai?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Hình biểu diễn của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau, không thể là hai đường thẳng song song.

Câu 14 Trắc nghiệm

Hình nào sau đây vẽ đúng quy tắc?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Quy tắc: phần nhìn thấy vẽ nét liền, phần không nhìn thấy vẽ nét đứt

Câu 15 Trắc nghiệm

Một hình không gian có hình chiếu đứng (nhìn từ trước vào (có thể nhìn từ sau) để từ hình 3D chuyển sang hình 2D) hình chiếu bằng (nhìn từ trên xuống) có thể nhìn từ dưới lên)), hình chiếu cạnh (từ trái sang (có thể nhìn từ phải sang)) lần lượt được thể hiện như sau:

Hãy vẽ hình biểu diễn của hình đó?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Đáp án A, B, D: Sai vì đoạn thẳng trong hình phải vẽ nét đứt vì không nhìn thấy.

Câu 16 Trắc nghiệm

Cho tứ giác lồi ABCD và điểm S không thuộc mp(ABCD). Có bao nhiêu mặt phẳng phân biệt xác định bởi 3 trong số các điểm A,B,C,D,S?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Từ hình vẽ ta thấy có 7 mặt phẳng được xác định bởi các điểm A,B,C,D,S.

Câu 17 Trắc nghiệm

Cho bốn điểm không đồng phẳng, ta có thể xác định được nhiều nhất bao nhiêu mặt phẳng phân biệt từ bốn điểm đã cho ?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Do bốn điểm không đồng phẳng nên không tồn tại bộ ba điểm thẳng hàng trong số bốn điểm đó. Cứ ba điểm không thẳng hàng xác định một mặt phẳng nên số mặt phẳng phân biệt có thể lập được từ bốn điểm đã cho là C34=4.

Câu 18 Trắc nghiệm

Trong mp(α), cho bốn điểm A,B,C,D trong đó không có ba điểm nào thẳng hàng. Điểm Smp(α). Có mấy mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Điểm S cùng với hai trong số bốn điểm A,B,C,D tạo thành một mặt phẳng, từ bốn điểm ta có 6 cách chọn ra hai điểm, nên có tất cả 6 mặt phẳng tạo bởi S và hai trong số bốn điểm nói trên.

Câu 19 Trắc nghiệm

Trong mặt phẳng (α) cho tứ giác ABCD, điểm E(α). Hỏi có bao nhiêu mặt phẳng phân biệt tạo bởi ba trong năm điểm A,B,C,D,E?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Điểm E2 điểm bất kì trong 4  điểm A,B,C,D tạo thành 6 mặt phẳng, bốn điểm A,B,C,D tạo thành 1 mặt phẳng.

Vậy có tất cả 7 mặt phẳng.

Câu 20 Trắc nghiệm

Cho năm điểm A,B,C,D,E trong đó không có bốn điểm nào ở trên cùng một mặt phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi ba trong số năm điểm đã cho?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Cứ chọn ra ba điểm trong số năm điểm A,B,C,D,E ta sẽ có một mặt phẳng. Từ năm điểm ta có C35=10 cách chọn ra ba điểm bất kỳ trong số năm điểm đã cho, nên có 10 mặt phẳng tạo bởi ba trong số năm điểm đã cho.