Phép tịnh tiến

  •   
Câu 1 Trắc nghiệm

Trong hệ trục tọa độ Oxy, cho v(3;3) và đường tròn (C):(x1)2+(y+2)2=9. Tìm phương trình đường tròn (C) là ảnh của (C) qua phép tịnh tiến Tv.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Bước 1:

Đường tròn (C): (x1)2+(y+2)2=9có tâm I(1;-2); bán kinh R=3.

Bước 2:

Gọi I’ là tâm đường tròn (C’).

Phép tịnh tiến điểm I thành điểm I’ theo véc-tơ v(3;3)thì II=v

Suy ra I(4;1)

Bước 3:

Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính nên:

Đường tròn (C’) có tâm là I(4;1); R=3.

Vậy (C’):(x4)2+(y1)2=9

Câu 2 Trắc nghiệm

Trong mặt phẳng với hệ tọa độ Oxy. Phép dời hình {x=x3y=y+1 biến parabol (P):y=x2+1 thành parabol (P) có phương trình là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi M(x;y)(P)M(x;y)=F(M) {x=x3y=y+1{x=x+3y=y1.

M(x+3;y1).

M(P)y1=(x+3)2+1

y=x2+6x+9+1+1y=x2+6x+11

Do đó điểm M thuộc (P):y=x2+6x+11.

Vậy phép dời hình đã cho biến (P):y=x2+1 thành (P):y=x2+6x+11.

Câu 3 Trắc nghiệm

Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + 2y – 1 = 0 và vectơ v(2;m). Để phép tịnh tiến theo v biến đường thẳng d thành chính nó, ta phải chọn m là số:

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Để phép tịnh tiến theo v biến đường thẳng d thành chính nó thì v(2;m) phải cùng phương với đường thẳng d.

Đường thẳng d có 1 VTCP là u(2;1), do đó v(2;m) và  u(2;1) cùng phương.

Vậy m=1.

Câu 4 Trắc nghiệm

Cho hình vuông ABCD tâm I. Gọi M,N lần lượt là trung điểm của AD,DC. Phép tịnh tiến theo vecto nào sau đây biến ΔAMI thành ΔMDN?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: IN là đường trung bình của tam giác ACDIN=12AD=AM.

AM=INTAM(I)=N.

Dễ thấy AM=MDTAM(M)=D và hiển nhiên TAM(A)=M.

Vậy TAM(ΔAMI)=ΔMDN.

Câu 5 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy, cho Δ:x2y1=0u(4;3). Gọi d là đường thẳng sao cho Tu biến d thành đường thẳng Δ. Phương trình đường thẳng d là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Δ=Tu(d)Δd Phương trình Δ có dạng: x2y+c=0(Δ).

Lấy A(1;0) bất kì thuộc d. Gọi A=Tu(A)AΔ.

Ta có: A=Tu(A){xA=xA+xu=1+4=5yA=yA+yu=0+3=3A(5;3).

AΔ52.3+c=0c=1.

Vậy phương trình đường thẳng Δ là: x2y+1=0.

Câu 6 Trắc nghiệm

Trong mặt phẳng Oxy, cho đường thẳng Δ:2x3y5=0. Ảnh của đường Δ qua phép tịnh tiến theo vectơ u=(1;2) là đường thẳng nào?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Gọi M(x;y)Δ;Tu(M)=M(x;y)Δ

{x=x1y=y+2{x=x+1y=y2M(x+1;y2)d

Md2(x+1)3(y2)5=02x3y+3=0

Vậy phương trình ảnh của đường thẳng Δ là: Δ=2x3y+3=0.

Câu 7 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng Δ là ảnh của đường thẳng Δ:x+2y1=0 qua phép tịnh tiến theo véctơ v=(1;1).

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Bước 1:

ΔΔ nên phương trình Δ có dạng Δ:x+2y+c=0.

Bước 2:

Lấy A(1;0)Δ, khi đó Tv(A)=A{xA=1+1=2yA=01=1A(2;1).

Bước 3:

AΔ2+2.(1)+c=0c=0.

Bước 4:

Vậy phương trình Δ:x+2y=0.

Câu 8 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho véctơ v=(a;b). Giả sử phép tịnh tiến theo v biến điểm M(x;y) thành M(x;y). Ta có biểu thức tọa độ của phép tịnh tiến theo vectơ v là:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có MM=(xx;yy).

Theo giả thiết Tv(M)=MMM=v {xx=ayy=b{x=x+ay=y+b

Câu 9 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho phép biến hình f xác định như sau: Với mỗi M(x;y), ta có M=f(M) sao cho M(x;y) thỏa mãn x=x+2;y=y3. Mệnh đề nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Theo giả thiết, ta có \left\{ \begin{array}{l}x' = x + 2\\y' = y - 3\end{array} \right. \Rightarrow \overrightarrow v  = \left( {2; - 3} \right).

Câu 10 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho hai điểm M\left( { - 10;1} \right)M'\left( {3;8} \right). Phép tịnh tiến theo vectơ \vec v biến điểm M thành M'. Mệnh đề nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi \vec v = \left( {a;b} \right).

Theo giả thiết: {T_{\overrightarrow v }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'}  = \vec v \Rightarrow \left\{ \begin{array}{l}3 - \left( { - 10} \right) = a\\8 - 1 = b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 13\\b = 7\end{array} \right.

Câu 11 Trắc nghiệm

Có bao nhiêu phép tịnh tiến biến một đường tròn cho trước thành chính nó?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Có đúng một phép tịnh tiến. Tịnh tiến theo vectơ–không.

Câu 12 Trắc nghiệm

Cho hai đoạn thẳng AB\;A'B'. Điều kiện cần và đủ để có thể tịnh tiến biến A thành A'  và biến B thành B'  là

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Giả sử có phép tịnh tiến {T_{\overrightarrow v }} biến A thành A'  và biến B thành B'.

Khi đó ta có \left\{ \begin{array}{l}{T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow \overrightarrow {AA'}  = \vec v\\{T_{\overrightarrow v }}\left( B \right) = B' \Leftrightarrow \overrightarrow {BB'}  = \vec v\end{array} \right. \Rightarrow \overrightarrow {AA'}  = \overrightarrow {BB'}

\Rightarrow \overrightarrow {AB}  + \overrightarrow {BA'}  = \overrightarrow {BA'}  + \overrightarrow {A'B'} \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {A'B'}

Câu 13 Trắc nghiệm

Cho bốn đường thẳng a,{\rm{ }}b,{\rm{ }}a',{\rm{ }}b' trong đó a\parallel a', b\parallel b'a cắt b. Có bao nhiêu phép tịnh tiến biến a thành a'b thành b'?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Giả sử a cắt b tại M; a' cắt b' tại M'.

Khi đó vectơ \overrightarrow {MM'} là vectơ tịnh tiến thỏa mãn yêu cầu bài toán.

Câu 14 Trắc nghiệm

Cho hình bình hànhABCD. Phép tịnh tiến theo vectơ nào dưới đây biến đường thẳng AB thành đường thẳng CD và biến đường thẳng AD thành đường thẳng BC?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Vectơ tịnh tiến \overrightarrow {AC} biến đường thẳng AB thành CD và biến AD thành BC. Chọn B.

Câu 15 Trắc nghiệm

Cho hình bình hành ABCD, Mlà một điểm thay đổi trên cạnh AB. Phép tịnh tiến theo vectơ \overrightarrow {BC} biến điểm M thành M'. Mệnh nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có {T_{\overrightarrow {BC} }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'}  = \overrightarrow {BC}  \Rightarrow M' \in CD.

Câu 16 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho điểm A\left( {2;5} \right). Phép tịnh tiến theo vectơ \overrightarrow v  = \left( {1;2} \right) biến A thành điểm A' có tọa độ là:

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Gọi A'\left( {x;y} \right) \Rightarrow \overrightarrow {AA'}  = \left( {x - 2;y - 5} \right).

Bước 2:

Ta có {T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow \overrightarrow {AA'}  = \overrightarrow v \Rightarrow \left\{ \begin{array}{l}x - 2 = 1\\y - 5 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 7\end{array} \right.

Câu 17 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho vectơ \overrightarrow v  = \left( { - 3;2} \right) và điểm A\left( {1;3} \right). Ảnh của điểm A qua phép tịnh tiến theo vectơ \overrightarrow v là điểm có tọa độ nào trong các tọa độ sau?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Gọi A'\left( {x;y} \right) là ảnh của A qua phép tịnh tiến theo vectơ \overrightarrow v  = \left( { - 3;2} \right)

\Rightarrow \overrightarrow {AA'}  = \left( {x - 1;y - 3} \right).

Ta có {T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow \overrightarrow {AA'}  = \vec v \Rightarrow \left\{ \begin{array}{l}x - 1 =  - 3\\y - 3 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 2\\y = 5\end{array} \right.

Câu 18 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy nếu phép tịnh tiến biến điểm A\left( {2; - 1} \right) thành điểm A'\left( {2018;2015} \right) thì nó biến đường thẳng nào sau đây thành chính nó?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Gọi \vec v là vectơ thỏa mãn {T_{\vec v}}\left( A \right) = A' \Rightarrow \vec v = \overrightarrow {AA'}  = \left( {2016;2016} \right)

Đường thẳng biến thành chính nó khi nó có vectơ chỉ phương cùng phương với \vec v.

Xét đáp án B. Đường thẳng có phương trình x - y - 100 = 0 có vectơ pháp tuyến \vec n = \left( {1; - 1} \right), suy ra vectơ chỉ phương \vec u = \left( {1;1} \right)\parallel \vec v (thỏa mãn).

Câu 19 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để phép tịnh tiến theo vectơ \vec v biến d thành chính nó thì \vec v phải là vectơ nào trong các vectơ sau?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Đường thẳng d có VTPT \vec n = \left( {2; - 1} \right) \Rightarrow VTCP \vec u = \left( {1;2} \right).

Bước 2:

Để d biến thành chính nó khi và chỉ khi vectơ \overrightarrow v cùng phương với vectơ chỉ phương của d.

Vậy \vec v = \left( {1;2} \right).

Câu 20 Trắc nghiệm

Trong mặt phẳng tọa độ Oxy cho hai đường thẳng song song ab lần lượt có phương trình 2x - y + 4 = 02x - y - 1 = 0. Tìm giá trị thực của tham số m để phép tịnh tiến T theo vectơ \vec u = \left( {m; - 3} \right) biến đường thẳng a thành đường thẳng b.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Chọn A\left( {0;4} \right) \in d.

Ta có {T_{\overrightarrow u }}\left( A \right) = A'\left( {x;y} \right) \Rightarrow \left\{ \begin{array}{l}x = 0 + m\\y = 4 + \left( { - 3} \right)\end{array} \right. \Rightarrow A'\left( {m;1} \right).

{T_{\overrightarrow u }} biến a thành b nên A' \in b \Leftrightarrow 2m - 1 - 1 = 0 \Leftrightarrow m = 1.