Hai mặt phẳng song song

  •   
Câu 1 Trắc nghiệm

Cho hai hình bình hành ABCD,ABEF nằm trên hai mặt phẳng phân biệt. Gọi M,N lần lượt thuộc đoạn AC,BF sao cho AMAC=BNBF( Tham khảo hình vẽ). Đường thẳng MN song song với mặt phẳng nào sau đây?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Bước 1:

Lấy H,K lần lượt trên AD,AF sao cho AHAD=AMACAKFA=BNBF.

Bước 2:

AMAC=BNBF  nên AHAD=AKFA

Tam giác AFDAHAD=AKFA, áp dụng định lí Ta-lét đảo ta có HKDF.

Tương tự ta có KNFE

Bước 3:

Do đó (HKN)(DFE)(MNKH)(DFEC)MN(DCF)

Câu 2 Trắc nghiệm

Cho hai mặt phẳng (α);(β) song song với nhau. Xét hai đường thẳng a(α);b(β). Tìm mệnh đề đúng trong các mệnh đề sau ?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có a(α);b(β)(α)(β).

Do đó 2 đường thẳng a,b có thể song song hoặc chéo nhau.

Câu 4 Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M,N,P lần lượt là trung điểm của AB, CD, SA (Tham khảo hình vẽ). Có bao nhiêu khẳng định đúng trong các khẳng định sau:

i)(MNP)(SBC).

ii)NP(SBC).

iii)MP(SCD).

iv)MP(SBC).

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Bước 1:

Ta có M,N,P lần lượt là trung điểm của AB,CD,SA.

Nên ta có {MNBCMPSB(MNP)(SBC){NP(SBC)MP(SBC)

=>I;II;IV đúng.

Ta có MPSB; SB cắt (SCD) tại S nên MP không song song với (SCD).

=> III sai.

Bước 2:

Vậy có 3 khẳng định đúng.

Câu 5 Trắc nghiệm

Chọn câu đúng : 

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau nên A đúng.

Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau nên B sai.

Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau nên C sai.

Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau nên D sai.

Câu 6 Trắc nghiệm

Cho một đường thẳng a song song với mặt phẳng (P). Có bao nhiêu mặt phẳng chứa a và song song với (P)?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Nếu đường thẳng a song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa a và song song với (P).

Câu 7 Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.

Câu 8 Trắc nghiệm

Trong các điều kiện sau, điều kiện nào kết luận mp(α)//mp(β)?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

A sai vì (α),(β) có thể trùng nhau.

B sai vì nếu a // b thì (α),(β) chưa chắc song song với nhau.

C không thể kết luận được vị trí của (α),(β).

D đúng vì dựa vào định nghĩa hai mặt phẳng song song khi mặt phẳng này chứa hai đường thẳng cắt nhau lần lượt song song với mặt phẳng kia.

Câu 10 Trắc nghiệm

Cho hai mặt phẳng song song (α)(β), đường thẳng a//(α) . Có mấy vị trí tương đối của a với (β)?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có: {(α)//(β)a//(α)[a(β)a//(β)

Câu 11 Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

A và B sai vì nếu (α)//(β)a(α),b(β) thì a // b hoặc a và b chéo nhau.

C sai vì nếu a // b và a(α),b(β) thì (α)//(β) hoặc (α)(β)=c//a//b

D đúng.

Câu 12 Trắc nghiệm

Hai đường thẳng ab nằm trong mp(α). Hai đường thẳng ab nằm trong mp(β). Mệnh đề nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Trong các đáp án đã cho chỉ có đáp án D đúng.

Câu 13 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Dễ dàng chứng minh được MNOP là hình bình hành M,N,O,P đồng phẳng A,C sai.

Ta có : MN là đường trung bình của tam giác SAD MN//AD//BC

ON là đường trung bình của tam giác SBD ON//SB

(MON)//(SBC)

Đáp án B đúng.

Đáp án D sai vì N(MNP)(SBD)

Câu 14 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Tam giác SBD đều. Một mặt phẳng (P) song song với (SBD) và đi qua điểm I thuộc cạnh AC (không trùng với A hoặc C). Thiết diện của (P) với hình chóp là hình gì ?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Trong (ABCD) qua I kẻ MN//BD (MAB;NAD)

Trong (SAB) qua M kẻ MP//SB (PSA)

(MNP)//(SBD)(P)(MNP)

{(MNP)(SAD)=NP(SBD)(SAD)=SD(MNP)//(SBD)NP//SD 

Theo định lí Ta-let ta có: MNBD=AMAB=APAS=MPSB=NPSD

Mà tam giác SBD đều nên SB=BD=SDMN=NP=MP

Vậy ΔMNP  đều.

Câu 15 Trắc nghiệm

Cho các mệnh đề sau:

1. Qua một điểm không thuộc hai mặt phẳng cắt nhau vẽ được duy nhất một đường thẳng song song với hai mặt đó.

2. Ba đường thẳng đôi một cắt nhau thì xác định một mặt phẳng.

3. Qua một điểm không thuộc hai đường thẳng chéo nhau vẽ được duy nhất một mặt phẳng song song với hai đường thẳng đó.

4. Ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó hoặc đồng quy hoặc song song.

5. Nếu đường thẳng d song song với đường thẳng d trong mặt phẳng (P) thì đường thẳng d song song hoặc nằm trong mặt phẳng (P).

6. Hai mặt phẳng cùng song song với một đường thẳng thì cắt nhau theo giao tuyến song song với đường thẳng đó.

Hãy chọn các mệnh đề đúng:

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

1. Qua một điểm vẽ đường thẳng song song với hai đường thẳng cắt nhau thì đường thẳng cần vẽ phải song song với giao tuyến của hai mặt phẳng đó. Qua một điểm không thuộc đường thẳng vẽ được duy nhất 1 đường thẳng song song với đường thẳng đã cho. Vậy 1. đúng.

2. Hai đường thẳng cắt nhau xác định một mặt phẳng. 2 sai

3. Giả sử a và b là hai đường thẳng chéo nhau, Ma,Mb

Qua M kẻ a//a;b//ba,b là duy nhất.

ab={M} mặt phẳng (P) xác định bới a’, b’ là duy nhất. Và ta có : (P)//a,(P)//b. Vậy 3 đúng.

4, 5. Hiển nhiên đúng.

6. Hai mặt phẳng cùng song song với một đường thẳng thì có thể song song hoặc trùng nhau, hoặc cắt nhau theo giao tuyến song song với đường thẳng đó. Vậy 6 sai.

Câu 16 Trắc nghiệm

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Kết quả nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Ta có AD(BEF)=AA sai.

Ta có: {AF//BEAD//BC(AFD)//(BEC) B đúng.

(ABD)(EFC)=CDC sai.

EC(ABF)=EDsai.

Câu 17 Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình bình hành. Mặt phẳng (α) cắt SA,SB,SC,SD theo thứ tự lần lượt tại A,B,C,D (không đồng thời trùng với các đầu mút). ABCD là hình bình hành khi và chỉ khi:

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Do A,B,C,D không đồng thời trùng với các đầu mút nên loại đáp án C.

Gọi a là đường thẳng qua S và song song với AB,b là đường thẳng qua S và song song với AD.

ABCD là hình bình hành khi và chỉ khi {AB//CDAB=CD

Ta có: {a=(SAB)(SCD)AB//CDAB(SAB),CD(SCD)AB//a

Suy ra AB//AB  (1)

Tương tự ta có: {b=(SAD)(SBC)AD//BCAD(SAD),CB(SBC)AD//b

Suy ra AD//AD  (2)

Từ (1)(2) (ABCD)//(ABCD) hay (α)//(ABCD)

Câu 18 Trắc nghiệm

Cho hai hình vuông ABCD,ABEF có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Trên các đường chéo ACBF ta lấy các điểm M,N sao cho AM=BN. Mặt phẳng (P) chứa MN và song song với AB cắt ADAF lần lượt tại M,N. Khẳng định nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Trong (ABCD) qua M kẻ MM’ // AB (MAD)

Trong (ABEF) qua N kẻ NN’ // AB (NAF)

Ta có:

{AMAD=AMACANAF=BNBFAM=BN;AC=BFAMAD=ANAFMN//DF

Lại có NN’ // AB // EF (MMNN)//(DEF)

MN(MMNN)MN//(DEF)

Câu 19 Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác ABC thỏa mãn AB=AC=4, ^BAC=300 . Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM=2MA. Diện tích thiết diện của (P) và hình chóp S.ABC bằng bao nhiêu?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Trong (SAB) qua M kẻ MN // AB, trong (SAC) kẻ MP // AC. Khi đó ta có (MNP) // (ABC).

(MNP)(P).

Thiết diện của (P) và hình chóp là tam giác MNP đồng dạng với tam giác ABC theo tỉ số MNAB=SMSA=23

SMNPSABC=(23)2=49SMNP=49SABC

Ta có SABC=12AB.AC.sin^BAC=12.4.4.sin300=4

SMNP=49.4=169

Câu 20 Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang có các đáy AD và BC. Gọi M là trọng tâm tam giác SAD, N là điểm thuộc AC sao cho NA=NC2, P là điểm thuộc đoạn CD sao cho PD=PC2 . Khi đó mệnh đề nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Gọi HSD sao cho HD=12SH

Ta có: SMSE=SHSD=23MH//AD//NPM,H,P,N đồng phẳng.

Ta có:

ANAC=DPDC=13NP//AD;DHDS=DPDC=13HP//SC{NP//AD//BCHP//SC(MHPN)//(SBC)(MNP)//(SBC)MN(MNP)MN//(SBC)