Câu hỏi:
2 năm trước
Trong mp\(\left( \alpha \right)\), cho bốn điểm \(A,B,C,D\) trong đó không có ba điểm nào thẳng hàng. Điểm \(S \notin mp\left( \alpha \right)\). Có mấy mặt phẳng tạo bởi \(S\) và hai trong số bốn điểm nói trên?
Trả lời bởi giáo viên
Đáp án đúng: c
Điểm \(S\) cùng với hai trong số bốn điểm \(A,B,C,D\) tạo thành một mặt phẳng, từ bốn điểm ta có $6$ cách chọn ra hai điểm, nên có tất cả $6$ mặt phẳng tạo bởi \(S\) và hai trong số bốn điểm nói trên.
Hướng dẫn giải:
Sử dụng điều kiện xác định mặt phẳng: Qua ba điểm không thẳng hàng, xác định duy nhất một mặt phẳng.