Câu hỏi:
2 năm trước

Số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là:

Trả lời bởi giáo viên

Đáp án đúng: d

\(y' = 3{x^2} - 3\)

\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\left( {{x_0};{y_0}} \right)\) là: \(y = \left( {3x_0^2 - 3} \right)\left( {x - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\)

$\begin{array}{l}A \in d \Rightarrow  - 6 = \left( {3x_0^2 - 3} \right)\left( {1 - {x_0}} \right) + x_0^3 - 3{x_0} + 1\,\,\left( d \right)\\ \Leftrightarrow  - 6 = 3x_0^2 - 3x_0^3 - 3 + 3{x_0} + x_0^3 - 3{x_0} + 1\\ \Leftrightarrow  - 2x_0^3 + 3x_0^2 + 4 = 0 \Leftrightarrow {x_0} = 2\end{array}$

Vậy số tiếp tuyến đi qua điểm \(A\left( {1; - 6} \right)\) của đồ thị hàm số \(y = {x^3} - 3x + 1\) là $1.$

Hướng dẫn giải:

Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \({x_0}\,\,\left( d \right)\)

Cho \(A \in \left( d \right)\), tìm \({x_0}\), có bao nhiêu nghiệm \({x_0}\) thì có bấy nhiêu tiếp tuyến của đồ thị hàm số đi qua A.

Câu hỏi khác