Chọn câu sai về hai tiên đề của Bo:
A, B, D - đúng
C - sai vì: khi chuyển từ trạng thái dừng có mức năng lượng thấp Em sang trạng thái dừng có mức năng lượng cao hơn En thì nguyên tử hấp thụ photon
Khối khí hidro có các nguyên tử đang ở trạng thái kích thích thứ nhất thì khối khí nhận thêm năng lượng và chuyển lên trạng thái kích thích mới. Biết rằng ở trạng thái kích thích mới, electron chuyển động trên quỹ đạo có bán kính gấp 49 lần bán kính Bo thứ nhất. Số các bức xạ có tần số khác nhau tối đa mà khối khí hidro có thể phát ra là
Ta có: \({r_n} = {n^2}{r_0} = 49{r_0} \Rightarrow n = 7\)
Số bức xạ có tần số khác nhau tối đa mà khối khí hidro có thể phát ra là: \(\dfrac{{n\left( {n - 1} \right)}}{2} = \dfrac{{7.6}}{2} = 21\)
Một đám nguyên tử hiđrô đang ở trạng thái cơ bản. Khi chiếu bức xạ có tần số f1 vào đám nguyên tử này thì chúng phát ra tối đa 3 bức xạ. Khi chiếu bức xạ có tần số f2 vào đám nguyên tử này thì chúng phát ra tối đa 10 bức xạ. Biết năng lượng ứng với các trạng thái dừng của nguyên tử hiđrô được tính theo biểu thức \({{\rm{E}}_{\rm{n}}} = - \dfrac{{{{\rm{E}}_0}}}{{{{\rm{n}}^2}}}\) (E0 là hằng số dương, n = 1,2,3,…). Tỉ số \(\dfrac{{{{\rm{f}}_1}}}{{{{\rm{f}}_2}}}\) là
Với tần số \({f_1}\), số bức xạ phát ra là: \(\dfrac{{{n_1}\left( {{n_1} - 1} \right)}}{2} = 3 \Rightarrow {n_1} = 3\)
Với tần số \({f_2}\), số bức xạ phát ra là: \(\dfrac{{{n_2}\left( {{n_2} - 1} \right)}}{2} = 10 \Rightarrow {n_2} = 5\)
Ta có:
\(\left\{ \begin{array}{l}h{f_1} = {E_3} - {E_1}\\h{f_2} = {E_5} - {E_1}\end{array} \right. \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{{E_3} - {E_1}}}{{{E_5} - {E_1}}} = \dfrac{{\dfrac{{ - {E_0}}}{9} - \left( {\dfrac{{ - {E_0}}}{1}} \right)}}{{\dfrac{{ - {E_0}}}{{25}} - \left( {\dfrac{{ - {E_0}}}{1}} \right)}} = \dfrac{{\dfrac{{ - 1}}{9} + 1}}{{\dfrac{{ - 1}}{{25}} + 1}} = \dfrac{{25}}{{27}}\)
Theo các tiên đề Bo, trong nguyên tử Hiđrô, giả sử chuyển động của electron quanh hạt nhân là chuyển động tròn đều. Tỉ số giữa tốc độ của electron trên quỹ đạo K với tốc độ của electron trên quỹ đạo N bằng
Ta có: \(\left\{ \begin{array}{l}k\dfrac{{{e^2}}}{{r_n^2}} = \dfrac{{mv_n^2}}{{{r_n}}}\\{r_n} = {n^2}.{r_0}\end{array} \right. \Rightarrow {v_n} = \sqrt {\dfrac{{k.{e^2}}}{{m.{r_n}}}} = \sqrt {\dfrac{{k.{e^2}}}{{m.{n^2}.{r_0}}}} \)
Mức K ứng với n = 1; Mức N ứng với n = 4
Tỉ số giữa tốc độ của electron trên quỹ đạo K với tốc độ của electron trên quỹ đạo N:
\(\dfrac{{{v_K}}}{{{v_N}}} = \sqrt {\dfrac{{{r_N}}}{{{r_K}}}} = \sqrt {\dfrac{{{4^2}.{r_0}}}{{1.{r_0}}}} = 4\)
Các mức năng lượng của các trạng thái dừng của nguyên tử hidro được xác định bằng biểu thức \({{E}_{n}}=-\frac{13,6}{{{n}^{2}}}eV\,\,\left( n=1,2,3,... \right)\). Nếu nguyên tử hidro hấp thụ một photon có năng lượng 2,55eV thì bước sóng nhỏ nhất của bức xạ mà nguyên tử hidro có thể phát ra là
Ta có
\({{E}_{n}}=-\frac{13,6}{{{n}^{2}}}eV\Rightarrow \left\{ \begin{align}& {{E}_{1~}}=-13,6eV \\& {{E}_{2~}}=-3,4eV \\& {{E}_{3~}}=-1,51eV \\& {{E}_{4~}}=-0,85eV \\\end{align} \right.\)
Thấy rằng : \({{E}_{4}}~-{{E}_{2}}~=-0,85+3,44=2,55eV\)
→ Nguyên tử hidro hấp thụ năng lượng 2,55 eV và nhảy từ mức n = 2 lên mức n = 4.
Nguyên tử Hidro có thể phát ra bước sóng nhỏ nhất khi nó chuyển từ mức 4 xuống mức 1. Ta có:
\(\begin{align}& {{E}_{4}}-{{E}_{1}}=\frac{hc}{{{\lambda }_{41}}}\Rightarrow {{\lambda }_{41}}=\frac{hc}{{{E}_{4}}-{{E}_{1}}} \\& \Rightarrow {{\lambda }_{41}}=\frac{6,{{625.10}^{-34}}{{.3.10}^{8}}}{\left( -0,85+13,6 \right).1,{{6.10}^{-19}}}=9,{{74.10}^{-8}}m \\\end{align}\)
Theo tiên đề Bo, bán kính Bo là r0 = 5,3.10-11m. Coi rằng ở trạng thái dừng thứ n của nguyên tử, electron chuyển động tròn đều xung quanh hạt nhân với bán kính quỹ đạo dừng tương ứng là rn = n2.r0 (n = 1,2,3,…). Khi electron của nguyên tử chuyển động trên quỹ đạo dừng có bán kính 132,5.10-11 m thì trong thời gian ∆t electron đi được quãng đường 3S. Cũng trong khoảng thời gian ∆t, nếu electron chuyển động trên quỹ đạo dừng có bán kính r (ứng với tên quỹ đạo là M) sẽ đi được quãng đường là
Ta có:
\(r = 132,{5.10^{ - 11}}m = {5^2}.{r_0} \Rightarrow n = 5\)→ Quỹ đạo dừng O
Quỹ đạo dừng M ứng với n = 3.
Lực Cu-long đóng vai trò lực hướng tâm, ta có:
\(k.\frac{{{e^2}}}{{r_n^2}} = m.\frac{{{v^2}}}{{{r_n}}} \Rightarrow v = \sqrt {\frac{{k.{e^2}}}{{m.{r_n}}}} = \frac{1}{n}.\sqrt {\frac{{k.{e^2}}}{{m.{r_0}}}} \)
Trên các quỹ đạo O và M tương ứng là các vận tốc vO và vM. ta có tỉ số:
\(\frac{{{v_O}}}{{{v_M}}} = \frac{{{n_M}}}{{{n_O}}} = \frac{3}{5} \Rightarrow {v_M} = \frac{5}{3}{v_O}\)
Quãng đường đi được của electron trong thời gian ∆t trên mỗi quỹ đạo O và M tương ứng là:
\(\left\{ \begin{array}{l}
{S_O} = 3S = {v_O}.\Delta t\\
{S_M} = {v_M}.\Delta t = \frac{5}{3}.{v_O}.\Delta t = \frac{5}{3}.3S = 5S
\end{array} \right.\)
Kích thích cho các nguyên tử hiđrô chuyển từ trạng thái cơ bản lên trạng thái kích thích sao cho bán kính quỹ đạo dừng tăng 25 lần. Trong quang phổ phát xạ của nguyên tử hiđrô sau đó, tỉ số giữa bước sóng ngắn nhất và bước sóng dài nhất là
Công thức tính bán kính quỹ đạo của electron trong các trạng thái dừng là:
\({r_n} = {n^2}.{r_0};\,\,n = 1,2,3, \ldots \)
Nguyên tử ở trạng thái mà bán kính quỹ đạo là:
\(\;{r_n} = 25{r_0} \Leftrightarrow {n^2}{r_0} = 25{r_0} \Rightarrow n = 5\)
Tức là nguyên tử đang ở mức O
Khi nguyên tử chuyển từ mức năng lượng cao về mức năng lượng thấp hơn thì nó phát ra một photon có năng lượng bằng hiệu hai mức:
\(\varepsilon = \frac{{hc}}{\lambda } = {E_m} - {E_n}\)
Bức xạ có bước sóng dài nhất ứng với chuyển từ mức O về mức N (n = 4):
\({\varepsilon _1} = \frac{{hc}}{{{\lambda _{\max }}}} = {E_O} - {E_N} = \frac{{{E_0}}}{{{5^2}}} - \frac{{{E_0}}}{{{4^2}}}\)
Bức xạ có bước sóng ngắn nhất ứng với chuyển từ mức O về mức K (n = 1) :
\({\varepsilon _2} = \frac{{hc}}{{{\lambda _{\min }}}} = {E_O} - {E_K} = \frac{{{E_0}}}{{{5^2}}} - \frac{{{E_0}}}{{{1^2}}}\)
Tỉ số giữa bước sóng ngắn nhất và bước sóng dài nhất là :
\(\frac{{{\lambda _{\min }}}}{{{\lambda _{\max }}}} = \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{\frac{{{E_0}}}{{{5^2}}} - \frac{{{E_0}}}{{{4^2}}}}}{{\frac{{{E_0}}}{{{5^2}}} - {E_0}}} = \frac{{\frac{1}{{{5^2}}} - \frac{1}{{{4^2}}}}}{{\frac{1}{{{5^2}}} - 1}} = \frac{3}{{128}} = \frac{9}{{384}}\)
Xét nguyên tử hiđrô theo mẫu nguyên tử Bo. Quỹ đạo dừng N của êlectron trong nguyên tử ứng với số nguyên n bằng
Quỹ đạo dừng N của electron trong nguyên tử ứng với n = 4.
Trong nguyên tử hiđrô, bán kính Bo là \(5,{3.10^{ - 11}}m\). Khi ở trạng thái kích thích, êlectron chuyển động trên quỹ đạo dừng L có bán kính là
Quỹ đạo L ứng với \(n = 2\)
\( \Rightarrow \) Bán kính quỹ đạo L:
\({r_L} = {2^2}{r_0} = 4.5,{3.10^{ - 11}} = 2,{12.10^{ - 10}}m\)
Trong quang phổ của nguyên tử hiđrô, các vạch phổ nhìn thấy được có màu đỏ, chàm, tím và màu nào sau đây?
Trong quang phổ của nguyên tử hiđrô, các vạch phổ nhìn thấy được gồm: đỏ, lam, chàm, tím.