Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.
Phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\)$\left( {a = 1;b' = - \left( {m - 3} \right);c = 8 - 4m} \right)$
Ta có $\Delta ' = {\left( {m - 3} \right)^2} - \left( {8 - 4m} \right) $$= {m^2} - 2m + 1 = {\left( {m - 1} \right)^2}$;
$S = {x_1} + {x_2} = 2\left( {m - 3} \right);$$P = {x_1}.{x_2} = 8 - 4m$
Vì $a = 1 \ne 0$ nên phương trình có hai nghiệm âm phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\P > 0\\S < 0\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} > 0\\2\left( {m - 3} \right) < 0\\8 - 4m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne 1\\m < 3\\m <2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}m \ne 1\\m < 2\end{array} \right.$
Vậy $m < 2$ và $m \ne 1$ là giá trị cần tìm.
Tìm các giá trị nguyên của \(m\) để phương trình \({x^2} - 6x + 2m + 1 = 0\) có hai nghiệm dương phân biệt
Phương trình \({x^2} - 6x + 2m + 1 = 0\)$\left( {a = 1;b' = - 3;c = 2m + 1} \right)$
Ta có $\Delta ' = 9 - 2m - 1 = 8 - 2m$; $S = {x_1} + {x_2} = 6;P = {x_1}.{x_2} = 2m + 1$
Vì $a = 1 \ne 0$nên phương trình có hai nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\P > 0\\S > 0\end{array} \right.\)$\left\{ \begin{array}{l}8 - 2m > 0\\6 > 0\\2m + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 4\\m > - \dfrac{1}{2}\end{array} \right. \Leftrightarrow - \dfrac{1}{2} < m < 4$ mà $m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2;3} \right\}$
Vậy $m \in \left\{ {0;1;2;3} \right\}$.
Tìm các giá trị của \(m\) để phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\) có hai nghiệm phân biệt cùng dấu.
Phương trình \(m{x^2} - 2\left( {m - 2} \right)x + 3\left( {m - 2} \right) = 0\)$\left( {a = m;b = - 2\left( {m - 2} \right);c = 3\left( {m - 2} \right)} \right)$
Ta có $\Delta ' = {\left( {m - 2} \right)^2} - 3m\left( {m - 2} \right) = - 2{m^2} + 2m + 4 = \left( {4 - 2m} \right)\left( {m + 1} \right)$; $P = {x_1}.{x_2} = \dfrac{{3\left( {m - 2} \right)}}{m}$
Phương trình có hai nghiệm phân biệt cùng dấu khi \(\left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\P > 0\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\\left( {4 - 2m} \right)\left( {m + 1} \right) > 0\\\dfrac{{3\left( {m - 2} \right)}}{m} > 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\ - 1 < m < 2\\\left[ \begin{array}{l}m > 2\\m < 0\end{array} \right.\end{array} \right. \Rightarrow - 1 < m < 0$
Vậy $ - 1 < m < 0$ là giá trị cần tìm.
Tìm các giá trị của \(m\) để phương trình \({x^2} - mx - m - 1 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^3 + x_2^3 = - 1\).
Phương trình \({x^2} - mx - m - 1 = 0\) có $a = 1 \ne 0$ và $\Delta = {m^2} - 4\left( {m - 1} \right) = {\left( {m - 2} \right)^2}$$ \ge 0;\forall m$ nên phương trình luôn có hai nghiệm \({x_1},{x_2}\)
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = - m - 1\end{array} \right.$
Xét \(x_1^3 + x_2^3 = - 1\)$ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = - 1 \Leftrightarrow {m^3} - 3m\left( { - m - 1} \right) = - 1 \Leftrightarrow {m^3} + 3{m^2} + 3m + 1 = 0$
$ \Leftrightarrow {\left( {m + 1} \right)^3} = 0 \Leftrightarrow m = - 1$
Vậy $m = - 1$ là giá trị cần tìm.
Tìm các giá trị của \(m\) để phương trình \({x^2} - 5x + m + 4 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(x_1^2 + x_2^2 = 23\).
Phương trình \({x^2} - 5x + m + 4 = 0\) có $a = 1 \ne 0$ và $\Delta = 25 - 4\left( {m + 4} \right) = 9 - 4m$
Phương trình có hai nghiệm \({x_1},{x_2}\) khi $\Delta \ge 0 \Leftrightarrow 9 - 4m \ge 0 \Leftrightarrow m \le \dfrac{9}{4}$.
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = 5\\{x_1}.{x_2} = m + 4\end{array} \right.$
Xét \(x_1^2 + x_2^2 = 23\)$ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 23 \Leftrightarrow 25 - 2m - 8 = 23 \Leftrightarrow m = - 3\,\,\left( {TM} \right)$
Vậy $m = - 3$ là giá trị cần tìm.
Giá trị nào dưới đây gần nhất với giá trị của \(m\)để phương trình \({x^2} + 3x - m = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn: \(2{x_1} + 3{x_2} = 13\).
Phương trình \({x^2} + 3x - m = 0\) có $a = 1 \ne 0$ và $\Delta = 9 + 4m$
Phương trình có hai nghiệm \({x_1},{x_2}\) khi $\Delta \ge 0 \Leftrightarrow 9 + 4m \ge 0 \Leftrightarrow m \ge - \dfrac{9}{4}$.
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = - 3\,\,\,\left( 1 \right)\\{x_1}.{x_2} = - m\,\,\left( 2 \right)\end{array} \right.$
Xét \(2{x_1} + 3{x_2} = 13\)$ \Leftrightarrow {x_1} = \dfrac{{13 - 3{x_2}}}{2}$ thế vào phương trình $\left( 1 \right)$ ta được $\dfrac{{13 - 3{x_2}}}{2} + {x_2} = - 3 \Leftrightarrow {x_2} = 19 \Rightarrow {x_1} = - 22$
Từ đó phương trình $\left( 2 \right)$ trở thành $ - 19.22 = - m \Leftrightarrow m = 418$ (nhận)
Vậy $m = 418$ là giá trị cần tìm.
Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.
Phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có $a = 1 \ne 0$ và $\Delta = {\left( {4m + 1} \right)^2} - 8\left( {m - 4} \right) = 16{m^2} + 33 > 0;\forall m$
Nên phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = - 4m - 1\\{x_1}.{x_2} = 2m - 8\end{array} \right.$
Xét \(A = {\left( {{x_1} - {x_2}} \right)^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 16{m^2} + 33 \ge 33\)
Dấu “=” xảy ra khi $m = 0$
Vậy $m = 0$ là giá trị cần tìm.
Tìm giá trị của \(m\) để phương trình \({x^2} - 2(m - 2)x + 2m - 5 = 0\) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \({x_1}(1 - {x_2}) + {x_2}(1 - {x_1}) < 4\)
Phương trình \({x^2} - 2(m - 2)x + 2m - 5 = 0\) có $a = 1 \ne 0$ và $\Delta ' = {\left( {m - 2} \right)^2} - 2m + 5 = {m^2} - 6m + 9 = {\left( {m - 3} \right)^2} \ge 0;\forall m$
Nên phương trình luôn có hai nghiệm \({x_1},{x_2}\).
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 4\\{x_1}.{x_2} = 2m - 5\end{array} \right.$
Xét \({x_1}(1 - {x_2}) + {x_2}(1 - {x_1}) < 4\)$ \Leftrightarrow \left( {{x_1} + {x_2}} \right) - 2{x_1}{x_2} - 4 < 0 \Leftrightarrow 2m - 4 - 2\left( {2m - 5} \right) - 4 < 0$ $ \Leftrightarrow - 2m + 2 < 0 \Leftrightarrow m > 1$
Vậy $m > 1$ là giá trị cần tìm.
Cho phương trình \({x^2} + mx + n - 3 = 0\). Tìm m và n để hai nghiệm \({x_1}\,\,;\,\,{x_2}\) của phương trình thỏa mãn hệ \(\left\{ \begin{array}{l}{x_1} - {x_2} = 1\\x_1^2 - x_2^2 = 7\end{array} \right.\)
\(\Delta = {m^2} - 4(n - 3) = {m^2} - 4n + 12\).
Phương trình có hai nghiệm \({x_1}\,\,;\,\,{x_2}\)\( \Leftrightarrow \Delta \ge 0 \Leftrightarrow {m^2} - 4n + 12 \ge 0\)
Áp dụng định lý Vi – ét ta có: \({x_1} + {x_2} = - m\,\,\,;\,\,{x_1}{x_2} = n - 3\,\,\,.\)
Ta có:
\(\left\{ \begin{array}{l}
{x_1} - {x_2} = 1\\
x_1^2 - x_2^2 = 7
\end{array} \right.\)\(\Leftrightarrow \left\{ \begin{array}{l}{\left( {{x_1} - {x_2}} \right)^2} = 1\\({x_1} - {x_2})({x_1} + {x_2}) = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 1\\{x_1} + {x_2} = 7\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}49 - 4{x_1}{x_2} = 1\\{x_1} + {x_2} = 7\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} = 12\\{x_1} + {x_2} = 7\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}n - 3 = 12\\ - m = 7\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}m = - 7\\n = 15\end{array} \right.\)
Thử lại ta có: \(\Delta = {\left( { - 7} \right)^2} - 4.15 + 12 = 1 > 0\,\,\,\left( {tm} \right)\)
Vậy \(m = - 7;\,\,n = 15.\)
Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 3m - 1 = 0\), (\(m\) là tham số).
Tìm tất cả các giá trị của \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
Để phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 3m - 1 = 0\) (*) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thì:
\(\begin{array}{l}\,\,\,\,\,\,\Delta ' > 0\\ \Leftrightarrow {\left( {m + 1} \right)^2} - {m^2} - 3m + 1 > 0\\ \Leftrightarrow {m^2} + 2m + 1 - {m^2} - 3m + 1 > 0\\ \Leftrightarrow - m + 2 > 0\\ \Leftrightarrow m < 2\end{array}\)
Khi đó, áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right) = 2m + 2\\{x_1}{x_2} = {m^2} + 3m - 1\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,x_1^2 + x_2^2 = 10\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow {\left( {2m + 2} \right)^2} - 2\left( {{m^2} + 3m - 1} \right) = 10\\ \Leftrightarrow 4{m^2} + 8m + 4 - 2{m^2} - 6m + 2 = 10\\ \Leftrightarrow 2{m^2} + 2m - 4 = 0\\ \Leftrightarrow {m^2} + m - 2 = 0\\ \Leftrightarrow {m^2} - m + 2m - 2 = 0\\ \Leftrightarrow m\left( {m - 1} \right) + 2\left( {m - 1} \right) = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {m + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\m + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 2\end{array} \right.\,\,\,\left( {tm} \right)\end{array}\)
Vậy \(m = 1\) hoặc \(m = - 2\).
Tìm \(a, b\) để đường thẳng \(y = ax + b\) song song với đường thẳng \(y = 4x + 5\) và cắt đồ thị hàm số \(y = {x^2}\) tại hai điểm \(A\left( {{x_1};{y_1}} \right)\), \(B\left( {{x_2};{y_2}} \right)\) phân biệt thỏa mãn \(x_1^2 + x_2^2 = 10\).
Vì đường thẳng \(y = ax + b\) song song với đường thẳng \(y = 4x + 5\) nên \(\left\{ \begin{array}{l}a = 4\\b \ne 5\end{array} \right.\).
Khi đó phương trình đường thẳng cần tìm có dạng \(y = 4x + b\,\,\left( {b \ne 5} \right)\).
Xét phương trình hoành độ giao điểm của đường thẳng \(y = 4x + b\,\,\left( {b \ne 5} \right)\) và parabol \(y = {x^2}\):
\({x^2} = 4x + b \Leftrightarrow {x^2} - 4x - b = 0\,\,\left( * \right)\)
Để đường thẳng \(y = 4x + b\,\,\left( {b \ne 5} \right)\) cắt parabol \(y = {x^2}\) tại 2 điểm phân biệt \(A\left( {{x_1};{y_1}} \right)\), \(B\left( {{x_2};{y_2}} \right)\) thì phương trình (*) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\).
\( \Rightarrow \Delta ' = {\left( { - 2} \right)^2} + b = 4 + b > 0 \Leftrightarrow b > - 4\).
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = - b\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\,x_1^2 + x_2^2 = 10\\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow {4^2} + 2b = 10\\ \Leftrightarrow 16 + 2b = 10\\ \Leftrightarrow 2b = - 6\\ \Leftrightarrow b = - 3\,\,\left( {tm} \right)\end{array}\)
Vậy \(a = 4,\,\,b = - 3\).
Tìm tất cả các giá trị của tham số \(m\) để phương trình \({x^2} - 2\left( {m - 1} \right)x + {m^2} - 6 = 0\) có hai nghiệm \({x_1},\,\,{x_2}\) sao cho \(x_1^2 + 4{x_1} + 2{x_2} - 2m{x_1} = - 3\).
Để phương trình đã cho có 2 nghiệm \({x_1},\,\,{x_2}\) thì:
\(\begin{array}{l}\Delta ' = {\left( {m - 1} \right)^2} - \left( {{m^2} - 6} \right) \ge 0\\ \Leftrightarrow {m^2} - 2m + 1 - {m^2} + 6 \ge 0\\ \Leftrightarrow - 2m + 7 \ge 0\\ \Leftrightarrow 2m \le 7\\ \Leftrightarrow m \le \dfrac{7}{2}\end{array}\)
Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m - 1} \right) = 2m - 2\\{x_1}{x_2} = {m^2} - 6\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\,x_1^2 + 4{x_1} + 2{x_2} - 2m{x_1} = - 3\\ \Leftrightarrow x_1^2 - 2\left( {m - 1} \right){x_1} + {m^2} - 6 + 2{x_1} + 2{x_2} = {m^2} - 6 - 3\\ \Leftrightarrow x_1^2 - 2\left( {m - 1} \right){x_1} + {m^2} - 6 + 2\left( {{x_1} + {x_2}} \right) = {m^2} - 9\,\,\left( * \right)\end{array}\)
Vì \({x_1}\) là nghiệm của phương trình đã cho nên \(x_1^2 - 2\left( {m - 1} \right){x_1} + {m^2} - 6 = 0\), do đó
\(\begin{array}{l}\left( * \right) \Leftrightarrow 2\left( {{x_1} + {x_2}} \right) = {m^2} - 9\\\,\,\,\,\,\,\, \Leftrightarrow 2.\left( {2m - 2} \right) = {m^2} - 9\\\,\,\,\,\,\, \Leftrightarrow 4m - 4 = {m^2} - 9\\\,\,\,\,\,\, \Leftrightarrow {m^2} - 4m - 5 = 0\\\,\,\,\,\,\, \Leftrightarrow {m^2} + m - 5m - 5 = 0\\\,\,\,\,\,\, \Leftrightarrow m\left( {m + 1} \right) - 5\left( {m + 1} \right) = 0\\\,\,\,\,\,\, \Leftrightarrow \left( {m + 1} \right)\left( {m - 5} \right) = 0\\\,\,\,\,\,\, \Leftrightarrow \left[ \begin{array}{l}m + 1 = 0\\m - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = - 1\,\,\left( {tm} \right)\\m = 5\,\,\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)
Vậy \(m = - 1\).
Cho phương trình \({x^2} + 4x + 3m - 2 = 0\), với \(m\) là tham số.
Giải phương trình với \(m = - 1\).
Thay \(m = - 1\) vào phương trình đã cho ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,{x^2} + 4x - 5 = 0\\ \Leftrightarrow {x^2} - x + 5x - 5 = 0\\ \Leftrightarrow x\left( {x - 1} \right) + 5\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 5\end{array} \right.\end{array}\)
Vậy khi \(m = - 1\) thì tập nghiệm của phương trình là \(S = \left\{ {1; - 5} \right\}\).
Cho phương trình \({x^2} + 4x + 3m - 2 = 0\), với \(m\) là tham số.
Tìm giá trị của \(m\) để phương trình đã cho có một nghiệm \(x = 2\).
Vì \(x = 2\) là một nghiệm của phương trình nên thay \(x = 2\) vào phương trình ta có:
\(\begin{array}{l}\,\,\,\,\,\,{2^2} + 4.2 + 3m - 2 = 0\\ \Leftrightarrow 3m + 10 = 0\\ \Leftrightarrow m = - \dfrac{{10}}{3}\end{array}\)
Vậy khi \(m = - \dfrac{{10}}{3}\) thì phương trình đã cho có một nghiệm \(x = 2\).
Cho phương trình \({x^2} + 4x + 3m - 2 = 0\), với \(m\) là tham số.
Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + 2{x_2} = 1\).
Ta có: \(\Delta ' = {\left( { - 2} \right)^2} - \left( {3m - 2} \right) = 4 - 3m + 2 = 6 - 3m\).
Để phương trình đã cho có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thì \(\Delta ' > 0 \Leftrightarrow 6 - 3m > 0 \Leftrightarrow m < 2\).
Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 4\\{x_1}{x_2} = 3m - 2\end{array} \right.\,\,\left( * \right)\).
Theo bài ra ta có: \({x_1} + 2{x_2} = 1 \Leftrightarrow {x_1} = 1 - 2{x_2}\).
Thế vào hệ (*) ta có:
\(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}1 - 2{x_2} + {x_2} = - 4\\\left( {1 - 2{x_2}} \right).{x_2} = 3m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\\left( {1 - 2.5} \right).5 = 3m - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\3m - 2 = - 45\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\m = - \dfrac{{43}}{3}\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy \(m = - \dfrac{{43}}{3}\).
Cho phương trình \({x^2} - 2mx - 4m - 5 = 0\) (1) (\(m\) là tham số).
Giải phương trình (1) khi \(m = - 2\).
Thay \(m = - 2\) vào phương trình (1) ta có: \({x^2} + 4x + 3 = 0\).
Nhận xét thấy \(a - b + 3 = 1 - 4 + 3 = 0\) nên phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = - 1\\{x_2} = - \dfrac{c}{a} = - 3\end{array} \right.\).
Vậy khi \(m = - 2\) thì tập nghiệm của phương trình là \(S = \left\{ { - 1; - 3} \right\}\).
Cho phương trình \({x^2} - 2mx - 4m - 5 = 0\) (1) (\(m\) là tham số).
Tìm \(m\) để phương trình (1) có hai nghiệm \({x_1},\,\,{x_2}\) thỏa mãn:
\(\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\)
\(\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\).
Phương trình (1) có \(\Delta ' = {m^2} - \left( {4m - 5} \right) = {m^2} + 4m + 5 = {\left( {m + 2} \right)^2} + 1 > 0\,\,\forall m\).
Do đó phương trình (1) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m\).
Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - 4m - 5\end{array} \right.\).
Theo bài ra ta có:
\(\begin{array}{l}\,\,\,\,\,\dfrac{1}{2}x_1^2 - \left( {m - 1} \right){x_1}{\kern 1pt} + {x_2} - 2m + \dfrac{{33}}{2} = 4059\\ \Leftrightarrow x_1^2 - 2\left( {m - 1} \right){x_1}{\kern 1pt} + 2{x_2} - 4m + 33 = 8118\\ \Leftrightarrow x_1^2 - 2m{x_1} + 2{x_1}{\kern 1pt} + 2{x_2} - 4m = 8085\\ \Leftrightarrow x_1^2 - 2m{x_1} - 4m - 5 + 2{x_1}{\kern 1pt} + 2{x_2} = 8085 - 5\\ \Leftrightarrow \left( {x_1^2 - 2m{x_1} - 4m - 5} \right) + 2\left( {{x_1}{\kern 1pt} + {x_2}} \right) = 8080\,\,\,\left( * \right)\end{array}\)
Vì \({x_1}\) là nghiệm của phương trình (1) nên ta có: \(x_1^2 - 2m{x_1} - 4m - 5 = 0\).
Do đó:
\(\begin{array}{l}\left( * \right) \Leftrightarrow 2\left( {{x_1} + {x_2}} \right) = 8080\\\,\,\,\,\,\,\, \Leftrightarrow {x_1} + {x_2} = 4040\\\,\,\,\,\,\,\, \Leftrightarrow 2m = 4040\\\,\,\,\,\,\,\, \Leftrightarrow m = 2020\end{array}\)
Vậy \(m = 2020\).
Cho phương trình bậc hai \({x^2} - 2x + m - 1 = 0\) (*), với \(m\) là tham số
Tìm tất cả các giá trị của \(m\) để phương trình (*) có nghiệm
Xét phương trình \({x^2} - 2x + m - 1 = 0\) (*) có:
\(\Delta ' = {\left( { - 1} \right)^2} - 1.\left( {m - 1} \right) = 2 - m\)
Để phương trình (*) có nghiệm thì \(\left\{ \begin{array}{l}a \ne 0\\\Delta ' \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\left( {ld} \right)\\2 - m \ge 0\end{array} \right. \Leftrightarrow m \le 2\)
Vậy với \(m \le 2\) thì phương trình (*) có nghiệm.
Cho phương trình bậc hai \({x^2} - 2x + m - 1 = 0\) (*), với \(m\) là tham số
Tính theo \(m\) giá trị của biểu thức \(A = x_1^3 + x_2^3\) với \({x_1},{x_2}\) là hai nghiệm của phương trình (*). Tìm giá trị nhỏ nhất của \(A.\)
Theo câu trước với \(m \le 2\) thì phương trình (*) có nghiệm \({x_1},{x_2}\)
Theo hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m - 1\end{array} \right.\)
Xét \(A = x_1^3 + x_2^3\)
\(\begin{array}{l} = x_1^3 + 3x_1^2{x_2} + 3{x_1}x_2^2 + x_2^3 - \left( {3x_1^2{x_2} + 3{x_1}x_2^2} \right)\\ = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)\\ = {2^3} - 3\left( {m - 1} \right).2\\ = 8 - 6\left( {m - 1} \right)\\ = 8 - 6m + 6\\ = 14 - 6m\end{array}\)
Vậy \(A = 14 - 6m\)
Vì \(m \le 2\) nên ta có: \(6m \le 12 \Leftrightarrow 14 - 6m \ge 14 - 12 \Leftrightarrow 14 - 6m \ge 2\)
Dấu “=” xảy ra khi \(m = 2\)
Vậy giá trị nhỏ nhất của A là \(2 \Leftrightarrow m = 2\).
Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).
Giải phương trình (1) với \(m = 6\).
Với \(m = 6\) thì phương trình (1) trở thành:
\(\begin{array}{l}\,\,\,\,\,\,{x^2} - 5x + 4 = 0\\ \Leftrightarrow {x^2} - x - 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} - x} \right) - \left( {4x - 4} \right) = 0\\ \Leftrightarrow x\left( {x - 1} \right) - 4\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\end{array}\)
Vậy với \(m = 6\) thì tập nghiệm của phương trình là \(S = \left\{ {1;4} \right\}\).