Câu hỏi:
2 năm trước
Cho phương trình \({x^2} - 2mx - 4m - 5 = 0\) (1) (\(m\) là tham số).
Giải phương trình (1) khi \(m = - 2\).
Trả lời bởi giáo viên
Đáp án đúng: b
Thay \(m = - 2\) vào phương trình (1) ta có: \({x^2} + 4x + 3 = 0\).
Nhận xét thấy \(a - b + 3 = 1 - 4 + 3 = 0\) nên phương trình có hai nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = - 1\\{x_2} = - \dfrac{c}{a} = - 3\end{array} \right.\).
Vậy khi \(m = - 2\) thì tập nghiệm của phương trình là \(S = \left\{ { - 1; - 3} \right\}\).
Hướng dẫn giải:
Thay m=-2 vào phương trình đã cho rồi giải phương trình thu được.