Câu hỏi:
2 năm trước

Cho phương trình ẩn x: \({x^2} - 5x + \left( {m - 2} \right) = 0\,\,\,\left( 1 \right)\).

Giải phương trình (1) với \(m = 6\).

Trả lời bởi giáo viên

Đáp án đúng: b

Với \(m = 6\) thì phương trình (1) trở thành:

\(\begin{array}{l}\,\,\,\,\,\,{x^2} - 5x + 4 = 0\\ \Leftrightarrow {x^2} - x - 4x + 4 = 0\\ \Leftrightarrow \left( {{x^2} - x} \right) - \left( {4x - 4} \right) = 0\\ \Leftrightarrow x\left( {x - 1} \right) - 4\left( {x - 1} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\end{array}\)

Vậy với \(m = 6\) thì tập nghiệm của phương trình là \(S = \left\{ {1;4} \right\}\).

Hướng dẫn giải:

Thay m=6 vào phương trình rồi giải.

Câu hỏi khác