Câu hỏi:
2 năm trước

Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.

Trả lời bởi giáo viên

Đáp án đúng: b

Phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có $a = 1 \ne 0$ và $\Delta  = {\left( {4m + 1} \right)^2} - 8\left( {m - 4} \right) = 16{m^2} + 33 > 0;\forall m$

Nên phương trình  luôn có hai nghiệm  phân biệt \({x_1},{x_2}\).

Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} =  - 4m - 1\\{x_1}.{x_2} = 2m - 8\end{array} \right.$

 Xét \(A = {\left( {{x_1} - {x_2}} \right)^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 16{m^2} + 33 \ge 33\)

Dấu “=” xảy ra khi $m = 0$

Vậy $m = 0$ là giá trị cần tìm.

Hướng dẫn giải:

Bước 1. Tìm điều kiện để phương trình có nghiệm \(\left\{ \begin{array}{l}a \ne 0\\\Delta  \ge 0\end{array} \right.\).

Bước 2. Từ hệ thức đã cho và hệ thức Vi-ét, tìm được điều kiện của tham số.

Bước 3. Kiểm tra điều kiện của tham số xem có thỏa mãn điều kiện ở bước 1 hay không rồi kết luận.

Câu hỏi khác