Câu hỏi:
2 năm trước

Cho phương trình \({x^2} + 4x + 3m - 2 = 0\), với \(m\) là tham số.

Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) sao cho \({x_1} + 2{x_2} = 1\).

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có: \(\Delta ' = {\left( { - 2} \right)^2} - \left( {3m - 2} \right) = 4 - 3m + 2 = 6 - 3m\).

Để phương trình đã cho có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thì \(\Delta ' > 0 \Leftrightarrow 6 - 3m > 0 \Leftrightarrow m < 2\).

Khi đó áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 4\\{x_1}{x_2} = 3m - 2\end{array} \right.\,\,\left( * \right)\).

Theo bài ra ta có: \({x_1} + 2{x_2} = 1 \Leftrightarrow {x_1} = 1 - 2{x_2}\).

Thế vào hệ (*) ta có: 

\(\begin{array}{l}\,\,\,\,\,\,\left\{ \begin{array}{l}1 - 2{x_2} + {x_2} =  - 4\\\left( {1 - 2{x_2}} \right).{x_2} = 3m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\\left( {1 - 2.5} \right).5 = 3m - 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\3m - 2 =  - 45\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_2} = 5\\m =  - \dfrac{{43}}{3}\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(m =  - \dfrac{{43}}{3}\).

Hướng dẫn giải:

Sử dụng định lý Vi-ét.

Câu hỏi khác