Phương trình bậc hai một ẩn và công thức nghiệm

Câu 41 Trắc nghiệm

Không dùng công thức nghiệm, tìm số nghiệm của phương trình $ - 4{x^2} + 9 = 0$.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Ta có $ - 4{x^2} + 9 = 0$$ \Leftrightarrow 4{x^2} = 9 \Leftrightarrow {x^2} = \dfrac{9}{4} \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{3}{2}\\x =  - \dfrac{3}{2}\end{array} \right.$

Phương trình có hai nghiệm $x = \dfrac{3}{2};x =  - \dfrac{3}{2}$.

Câu 42 Trắc nghiệm

Tìm tích các giá trị của m để phương trình $4m{x^2} - x - 14{m^2} = 0$ có nghiệm $x = 2$.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Thay $x = 2$ vào phương trình $4m{x^2} - x - 10{m^2} = 0$ , ta có

$4m{.2^2} - 2 - 14{m^2} = 0 $

$\Leftrightarrow 14{m^2} - 16m + 2 = 0$

$ \Leftrightarrow \left( {14m - 2} \right)\left( {m - 1} \right) = 0 $

$\Leftrightarrow \left[ \begin{array}{l}m = \dfrac{1}{7}\\m = 1\end{array} \right.$

Suy ra tích các giá trị của $m$ là $\dfrac{1}{7}.1 = \dfrac{1}{7}$.

Câu 43 Trắc nghiệm

Tính biệt thức $\Delta $ từ đó tìm số nghiệm của phương trình $9{x^2} - 15x + 3 = 0$.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Ta có $9{x^2} - 15x + 3 = 0$$\left( {a = 9;b =  - 15;c = 3} \right)$$ \Rightarrow \Delta  = {b^2} - 4ac = {\left( { - 15} \right)^2} - 4.9.3 = 117 > 0$ nên phương trình có hai nghiệm phân biệt.

Câu 44 Trắc nghiệm

Cho phương trình \({x^2} - 2\left( {m + 1} \right)x + m – 4=0\) , với giá trị nào của m thì phương trình có hai nghiệm trái dấu?

 

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Để phương trình:  \({x^2} - 2\left( {m + 1} \right)x + m – 4=0\) có hai nghiệm trái dấu  \( \Leftrightarrow ac < 0 \Leftrightarrow m - 4 < 0 \Leftrightarrow m < 4.\)

Vậy với m < 4 thì yêu cầu của bài toán được thỏa mãn.

Câu 45 Trắc nghiệm

Tính biệt thức $\Delta $ từ đó tìm các nghiệm (nếu có ) của phương trình ${x^2} - 2\sqrt 2 x + 2 = 0$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Ta có ${x^2} - 2\sqrt 2 x + 2 = 0$$\left( {a = 1;b =  - 2\sqrt 2 ;c = 2} \right)$$ \Rightarrow \Delta  = {b^2} - 4ac = {\left( {2\sqrt 2 } \right)^2} - 4.1.2 = 0$ nên phương trình có nghiệm kép ${x_1} = {x_2} =  - \dfrac{b}{{2a}} = \dfrac{{2\sqrt 2 }}{2} = \sqrt 2 $.

Câu 46 Trắc nghiệm

Cho phương trình \({x^2} + 1 = 9{m^2}{x^2} + 2\left( {3m + 1} \right)x\,\left( {m \in \,R} \right).\) Tích \(P\) tất cả các giá trị của \(m\) để phương trình đã cho không là phương trình bậc hai bằng

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

\(\begin{array}{l}{x^2} + 1 = 9{m^2}{x^2} + 2\left( {3m + 1} \right)x\\ \Leftrightarrow \left( {9{m^2} - 1} \right){x^2} + 2\left( {3m + 1} \right)x - 1 = 0\end{array}\)

Phương trình trên không là phương trình bậc hai \( \Leftrightarrow 9{m^2} - 1 = 0 \Leftrightarrow m =  \pm \dfrac{1}{3}\).

Vậy tích các giá trị của m là \(P =  - \dfrac{1}{9}\).

Câu 47 Trắc nghiệm

Tìm điều kiện của tham số  $m$ để phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt .

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình \( - {x^2} + 2mx - {m^2} - m = 0\)$\left( {a =  - 1;b = 2m;c =  - {m^2} - m} \right)$

$ \Rightarrow \Delta  = {\left( {2m} \right)^2} - 4.\left( { - 1} \right).\left( { - {m^2} - m} \right) = 4{m^2} - 4{m^2} - 4m =  - 4m$

Để phương trình đã cho có hai nghiệm phân biệt thì

$\left\{ \begin{array}{l}a \ne 0\\\Delta  > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 \ne 0\\ - 4m > 0\end{array} \right. \Leftrightarrow m < 0$

Vậy với $m < 0$ thì phương trình có hai nghiệm phân biệt.

Câu 48 Trắc nghiệm

Tìm các giá trị của tham số  $m$ để  phương trình \({x^2} + mx - m = 0\) có nghiệm kép.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Phương trình \({x^2} + mx - m = 0\)$\left( {a = 1;b = m;c =  - m} \right)$

$ \Rightarrow \Delta  = {m^2} - 4.1.\left( { - m} \right) = {m^2} + 4m$

Để phương trình đã cho có nghiệm kép thì

$\left\{ \begin{array}{l}a \ne 0\\\Delta  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 \ne 0\\{m^2} + 4m = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  - 4\end{array} \right.$

Vậy với $m = 0;m =  - 4$ thì phương trình có nghiệm kép.

Câu 49 Trắc nghiệm

Tìm điều kiện của tham số $m$ để phương trình \({x^2} + (1 - m)x - 3 = 0\) vô nghiệm

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Phương trình \({x^2} + (1 - m)x - 3 = 0\)$\left( {a = 1;b = 1 - m;c =  - 3} \right)$

$ \Rightarrow \Delta  = {\left( {1 - m} \right)^2} - 4.1.\left( { - 3} \right) = {\left( {1 - m} \right)^2} + 12 \ge 12 > 0;\,\forall m$

Nên phương trình đã cho luôn có hai nghiệm phân biệt

Hay không có giá trị nào của $m$ để phương trình vô nghiệm.

Câu 50 Trắc nghiệm

Tìm điều kiện của tham số $m$ để phương trình \((m + 2){x^2} + 2x + m = 0\) vô nghiệm

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

Phương trình \((m + 2){x^2} + 2x + m = 0\)$\left( {a = m + 2;b = 2;c = m} \right)$

TH1: $m + 2 = 0 \Leftrightarrow m =  - 2$ ta có phương trình: $2x - 2 = 0 \Leftrightarrow x = 1$

TH2: $m + 2 \ne 0 \Leftrightarrow m \ne  - 2$

Ta có $\Delta  = {2^2} - 4\left( {m + 2} \right).m =  - 4{m^2} - 8m + 4$

Để phương trình đã cho vô nghiệm thì $\left\{ \begin{array}{l}m \ne  - 2\\ - 4{m^2} - 8m + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne -2\\2 - {\left( {m + 1} \right)^2} < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ne -2\\{\left( {m + 1} \right)^2} > 2\end{array} \right.$

$ \Leftrightarrow \left\{ \begin{array}{l}m \ne -2\\\left[ \begin{array}{l}m + 1 > \sqrt 2 \\m + 1 <  - \sqrt 2 \end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m > -1 + \sqrt 2\\m < -1 - \sqrt 2 \end{array} \right.$

Câu 51 Trắc nghiệm

Tìm điều kiện của tham số $m$  để phương trình \(m{x^2} - 2(m - 1)x + m - 3 = 0\) có nghiệm.

Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Phương trình \(m{x^2} - 2(m - 1)x + m - 3 = 0\)$\left( {a = m;b =  - 2\left( {m - 1} \right);c = m - 3} \right)$

TH1: $m = 0$ ta có phương trình $2x - 3 = 0 \Leftrightarrow 2x=3\Leftrightarrow x = \dfrac{3}{2}$

TH2: $m \ne 0$, ta có $\Delta  = b^2-4ac=4{\left( {m - 1} \right)^2} - 4m.\left( {m - 3} \right)$$=4m^2-8m+4-4m^2+12m = 4m + 4$

Để phương trình đã cho có nghiệm thì $\Delta  \ge 0 \Leftrightarrow 4m + 4 \ge 0 \Leftrightarrow 4m\ge -4 \Leftrightarrow m \ge  - 1$.

Vậy để phương trình đã cho có nghiệm thì $m \ge  - 1$.

Câu 52 Trắc nghiệm

Cho phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$. Kết luận nào sau đây là đúng?

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$ có $a = 1;b =  - \left( {m - 1} \right);c =  - m$

Suy ra $\Delta  = {\left[ { - \left( {m - 1} \right)} \right]^2} - 4.1.\left( { - m} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2} \ge 0,\forall m$

Nên phương trình đã cho có nghiệm với mọi $m$.

Câu 53 Trắc nghiệm

Biết rằng phương trình ${x^2} - {\rm{ }}2(3m + 2)x + {\rm{ }}2{m^2} - 3m - 10 = 0$

 có một trong các nghiệm bằng $ - 1$. Tìm nghiệm còn lại với $m > 0$

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Thay $x =  - 1$ vào phương trình: ${\left( { - 1} \right)^2} - 2\left( {3m + 2} \right).\left( { - 1} \right) + 2{m^2} - 3m - 10 = 0$$ \Leftrightarrow 2{m^2} + 3m - 5 = 0$

$ \Leftrightarrow \left( {2m + 5} \right)\left( {m - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}m =  - \dfrac{5}{2}\,\,\left( L \right)\\m = 1\,\,\left( N \right)\end{array} \right.$

+) Với $m = 1$ ta có  phương trình ${x^2} - 10x - 11 = 0 \Leftrightarrow \left( {x - 11} \right)\left( {x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 11\\x =  - 1\end{array} \right.$

Vậy nghiệm còn lại của phương trình là $x = 11$.

Câu 54 Trắc nghiệm

Phương trình \({x^2} - \left( {\sqrt 3  + \sqrt 2 } \right)x + \sqrt 6  = 0\) có các nghiệm đều là nghiệm của phương trình \({x^4} + b{x^2} + c = 0\,\,\left(  *  \right).\) Tìm \(b,c\) và giải phương trình \(\left(  *  \right)\) ứng với \(b,c\) vừa tìm được.

Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

Phương trình \({x^2} - \left( {\sqrt 3  + \sqrt 2 } \right)x + \sqrt 6  = 0\)\( \Leftrightarrow \left( {x - \sqrt 2 } \right)\left( {x - \sqrt 3 } \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x = \sqrt 3 \end{array} \right..\)

Ta có \(x = \sqrt 2 \) và \(x = \sqrt 3 \) là các nghiệm của \(\left( * \right)\)

\( \Rightarrow \left\{ \begin{array}{l}{\left( {\sqrt 2 } \right)^4} + b{\left( {\sqrt 2 } \right)^2} + c = 0\\{\left( {\sqrt 3 } \right)^4} + b{\left( {\sqrt 3 } \right)^2} + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2b + c =  - 4\\3b + c =  - 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 5\\c = 6\end{array} \right..\)

Thay \(\left\{ \begin{array}{l}c = 6\\b =  - 5\end{array} \right.\) vào \(\left(  *  \right)\): \({x^4} - 5{x^2} + 6 = 0 \Leftrightarrow \left( {{x^2} - 2} \right)\left( {{x^2} - 3} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\{x^2} = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \sqrt 2 \\x =  - \sqrt 3 \\x = \sqrt 2 \\x = \sqrt 3 \end{array} \right..\)

Vậy với \(b =  - 5;\,\,c = 6\) ta được phương trình \(\left( * \right)\) có tập nghiệm: \(S = \left\{ { \pm \sqrt 2 ;\,\, \pm \sqrt 3 } \right\}.\)

Câu 55 Trắc nghiệm

Giải phương trình:

\(x(2x - 3) + 1 = 4(x - 1).\)
Bạn đã chọn sai | Đáp án đúng: a
Bạn đã chọn đúng | Đáp án đúng: a
Bạn chưa làm câu này | Đáp án đúng: a

\(\begin{array}{l}x\left( {2x - 3} \right) + 1 = 4\left( {x - 1} \right)\\ \Leftrightarrow 2{x^2} - 3x + 1 - 4x + 4 = 0\\ \Leftrightarrow 2{x^2} - 7x + 5 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {2x - 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\2x - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \dfrac{5}{2}\end{array} \right..\end{array}\)

Vậy phương trình có tập nghiệm \(S = \left\{ {1;\,\dfrac{5}{2}} \right\}.\)

Câu 56 Trắc nghiệm

Giải phương trình:

\({x^2}({x^2} - 2) = 3({x^2} + 12)\)
Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

\(\begin{array}{l}{x^2}({x^2} - 2) = 3({x^2} + 12)\\ \Leftrightarrow {x^4} - 2{x^2} - 3{x^2} - 36 = 0\\ \Leftrightarrow {x^4} - 5{x^2} - 36 = 0\,\,\,\,\,\left( * \right)\end{array}\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\)

\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow {t^2} - 5t - 36 = 0\\ \Leftrightarrow {t^2} - 9t + 4t - 36 = 0\\ \Leftrightarrow t\left( {t - 9} \right) + 4\left( {t - 9} \right) = 0\\ \Leftrightarrow \left( {t + 4} \right)\left( {t - 9} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t + 4 = 0\\t - 9 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - 4\,\,\,\left( {ktm} \right)\\t = 9\,\,\,\left( {tm} \right)\end{array} \right.\\ \Rightarrow {x^2} = 9 \Leftrightarrow x =  \pm 3.\end{array}\)

Vậy tập nghiệm của phương trình là : \(S = \left\{ { - 3;\,\,3} \right\}.\)

Câu 57 Trắc nghiệm

Cho phương trình \(\left( {m + 1} \right){x^2} - \left( {2m + 3} \right)x + m + 4 = 0\,\,\,\left( 1 \right)\), với m là tham số.

Giải phương trình khi \(m =  - 1\) .
Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Với \(m =  - 1\) phương trình thành: \( - x + 3 = 0 \Leftrightarrow x = 3\)

Vậy với \(m =  - 1\) phương trình có nghiệm \(x = 3.\)

Câu 58 Trắc nghiệm

Cho phương trình \(\left( {m + 1} \right){x^2} - \left( {2m + 3} \right)x + m + 4 = 0\,\,\,\left( 1 \right)\), với m là tham số.

Tìm tất cả các giá trị của m để phương trình \(\left( 1 \right)\) có nghiệm.
Bạn đã chọn sai | Đáp án đúng: c
Bạn đã chọn đúng | Đáp án đúng: c
Bạn chưa làm câu này | Đáp án đúng: c

Với \(m =  - 1\) phương trình \(\left( 1 \right)\) có nghiệm \(x = 3\)

Với \(m \ne  - 1,\,\,\,\left( 1 \right)\) là phương trình bậc hai có:

\(\Delta  = {\left( {2m + 3} \right)^2} - 4\left( {m + 1} \right)\left( {m + 4} \right) = 4{m^2} + 12m + 9 - 4{m^2} - 20m - 16 =  - 8m - 7\)

Để phương trình \(\left( 1 \right)\) có nghiệm \( \Leftrightarrow \Delta  \ge 0 \Leftrightarrow  - 8m - 7 \ge 0 \Leftrightarrow m \le  - \dfrac{7}{8}\)

Vậy với \(m \le  - \dfrac{7}{8}\) phương trình \(\left( 1 \right)\) có nghiệm.

Câu 59 Trắc nghiệm

 Giải phương trình \(5{{x}^{4}}+2{{x}^{2}}-16=10-{{x}^{2}}\)

Bạn đã chọn sai | Đáp án đúng: b
Bạn đã chọn đúng | Đáp án đúng: b
Bạn chưa làm câu này | Đáp án đúng: b

\(\begin{align}  & \,\,\,\,\,\,5{{x}^{4}}+2{{x}^{2}}-16=10-{{x}^{2}} \\  & \Leftrightarrow 5{{x}^{4}}+3{{x}^{2}}-26=0 \\ \end{align}\)

Đặt  \({{x}^{2}}=t\,\,\,\left( t\ge 0 \right)\)

PT  \(\Leftrightarrow 5{{t}^{2}}+3t-26=0\,\,\left( * \right)\)

\(\Delta ={{3}^{2}}-4.5.(-26)=529>0\).

PT  (*) có 2 nghiệm phân biệt: \(\left[ \begin{align}  & {{t}_{1}}=\frac{-3+\sqrt{529}}{2.5}=2\ \ \left( tm \right) \\  & {{t}_{2}}=\frac{-3-\sqrt{529}}{2.5}=\frac{-13}{5}\ \ \left( ktm \right) \\ \end{align} \right.\) 

Với \(t=2\Leftrightarrow {{x}^{2}}=2\Leftrightarrow x=\pm \sqrt{2}.\)  

Phương trình có 2 nghiệm phân biệt:  \(x=\pm \sqrt{2}\)

Câu 60 Trắc nghiệm

Tìm m để parabol  \(\left( P \right):y = {x^2} - (m - 1)x + m + 2\) và đường thẳng \(d:y = 2x + 4\) cắt nhau tại hai điểm phân biệt.

Bạn đã chọn sai | Đáp án đúng: d
Bạn đã chọn đúng | Đáp án đúng: d
Bạn chưa làm câu này | Đáp án đúng: d

Parabol (P)  và đường thẳng d cắt nhau tại hai điểm phân biệt khi phương trình hoành độ giao điểm có hai nghiệm phân biệt

\( \Leftrightarrow {x^2} - (m - 1)x + m + 2 - 2x - 4 = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow {x^2} - (m + 1)x + m - 2 = 0\) có hai nghiệm phân biệt

\( \Leftrightarrow \Delta  = {( - (m + 1))^2} - 4(m - 2) > 0 \Leftrightarrow {m^2} + 2m + 1 - 4m + 8 > 0\)

\( \Leftrightarrow {m^2} - 2m + 1 + 8 > 0 \Leftrightarrow {(m - 1)^2} + 8 > 0\) (luôn đúng với mọi m).